DOI QR코드

DOI QR Code

Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice

  • Weon, Jin Bae (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University) ;
  • Jung, Youn Sik (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University) ;
  • Ma, Choong Je (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University)
  • Received : 2015.06.24
  • Accepted : 2016.02.19
  • Published : 2016.05.01

Abstract

Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer's disease.

Keywords

References

  1. Ballard, C. G. (2002) Advances in the treatment of Alzheimer's disease: benefits of dual cholinesterase inhibition. Eur. Neurol. 47, 64-70. https://doi.org/10.1159/000047952
  2. Bekinschtein, P., Cammarota, M., Izquierdo, I. and Medina, J. H. (2008) BDNF and memory formation and storage. Neuroscientist 14, 147-156. https://doi.org/10.1177/1073858407305850
  3. Blokland, A. (1995) Acetylcholine: A neurotransmitter for learning and memory? Brain Res. Brain Res. Rev. 21, 285-300. https://doi.org/10.1016/0165-0173(95)00016-X
  4. Bramham, C. R. and Messaoudi, E. (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog. Neurobiol. 76, 99-125. https://doi.org/10.1016/j.pneurobio.2005.06.003
  5. Chen, X., Luo, J. G. and Kong, L.Y. (2010) Two new triterpenoid saponins from Dianthus superbus L. J. Asian Nat. Prod. Res. 12, 458-463. https://doi.org/10.1080/10286020.2010.493326
  6. Collerton, D. (1986) Cholinergic function and intellectual decline in Alzheimer's disease. Neuroscience 19, 1-28. https://doi.org/10.1016/0306-4522(86)90002-3
  7. Coyle, J. T., Price, D. L. and DeLong, M. R. (1983) Alzheimer's disease: a disorder of cortical cholinergic innervation. Science 219, 1184-1190. https://doi.org/10.1126/science.6338589
  8. Crapper, D. R. and DeBoni, U. (1978) Brain aging and Alzheimer's disease. Can. Psychiatr. Assoc. J. 23, 229-233. https://doi.org/10.1177/070674377802300406
  9. Dahiya, R. (2008) Synthesis and biological activity of a cyclic hexapeptide from Dianthus superbus. Chem. Pap. 62, 527-535.
  10. Ding, C., Zhang, W., Li, J., Lei, J. and Yu, J. (2013) Cytotoxic constituents of ethyl acetate fraction from Dianthus superbus. Nat. Prod. Res. 27, 1691-1694. https://doi.org/10.1080/14786419.2012.763127
  11. Flood, J.F. and Cherkin, A. (1986) Scopolamine effects on memory retention in mice: a model of dementia? Behav. Neural. Biol. 45, 169-184. https://doi.org/10.1016/S0163-1047(86)90750-8
  12. Gou, J., Zou, Y. and Ahn, J. (2011) Enhancement of antioxidant and antimicrobial activities of Dianthus superbus, Polygonum aviculare, Sophora flavescens, and Lygodium japonicum by pressure-assisted water extraction. Food Sci. Biotechnol. 20, 283-287. https://doi.org/10.1007/s10068-011-0040-7
  13. Hsieh, P. W., Chang, F. R., Wu, C. C., Wu, K. Y., Li, C. M., Chen, S. L. and Wu, Y. C. (2004) New cytotoxic cyclic peptides and dianthramide from Dianthus superbus. J. Nat. Prod. 67, 1522-1527. https://doi.org/10.1021/np040036v
  14. Hsieh, P. W., Chang, F. R., Wu, C. C., Li, C. M., Wu, K. Y. and Chen, S. L. (2005) Longicalycinin A, a new cytotoxic cyclic peptide from Dianthus superbus var. longicalycinus (MAXIM.) WILL. Chem. Pharm. Bull. 53, 336-338. https://doi.org/10.1248/cpb.53.336
  15. Lewis, P. R., Shute, C. C. and Silver, A. (1967) Confirmation from choline acetylase analyses of a massive cholinergic innervation to the rat hippocampus. J. Physiol. 191, 215-224. https://doi.org/10.1113/jphysiol.1967.sp008246
  16. Lopez-Exposito, I., Castillo, A., Yang, N., Liang, B. and Li, X. M. (2011) Chinese herbal extracts of Rubia cordifolia and Dianthus superbus suppress IgE production and prevent peanut-induced anaphylaxis. Chin. Med. 16, 35-44.
  17. Luo, J. G., Chen, X. C. and Kong, L. Y. (2011) Three new triterpenoid saponins from Dianthus superbus. Chem. Pharm. Bull. 59, 518-521. https://doi.org/10.1248/cpb.59.518
  18. McGleenon, B. M., Dynan, K. B. and Passmore, A. P. (1999) Acetylcholinesterase inhibitors in Alzheimer's disease. Br. J. Clin. Pharmacol. 48, 471-480.
  19. Morris, R. (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47-60. https://doi.org/10.1016/0165-0270(84)90007-4
  20. O'Keefe, J. and Nadel, L. (1978) The hippocampus as a cognitive map. Clarendon Press., Oxford.
  21. Reid-Adam, J., Yang, N., Song, Y., Cravedi, P., Li, X. M. and Heeger, P. (2013) Immunosuppressive effects of the traditional Chinese herb qu mai on human alloreactive T cells. Am. J. Transplant. 13, 1159-1167. https://doi.org/10.1111/ajt.12180
  22. Panja, D. and Bramham, C. R. (2014) BDNF mechanisms in late LTP formation: A synthesis and breakdown. Neuropharmacology 76, 664-676. https://doi.org/10.1016/j.neuropharm.2013.06.024
  23. Shimizu, M., Hayashi, T., Shimizu, K. and Morita, N. (1982) A pyrantype glycoside from Dianthus superbus var. longicalycinus. Phytochemistry 21, 245-247. https://doi.org/10.1016/0031-9422(82)80063-0
  24. Shin, I. S., Lee, M. Y., Ha, H., Jeon, W. Y., Seo, C. S. and Shin, H. K. (2012) Dianthus superbus fructus suppresses airway inflammation by downregulating of inducible nitric oxide synthase in an ovalbumin- induced murine model of asthma. J. Inflamm. (Lond) 9, 41-49. https://doi.org/10.1186/1476-9255-9-41
  25. Tong, Y., Luo, J. G., Wang, R., Wang, X. B. and Kong, L. Y. (2012) New cyclic peptides with osteoblastic proliferative activity from Dianthus superbus. Bioorg. Med. Chem. Lett. 22, 1908-1911. https://doi.org/10.1016/j.bmcl.2012.01.058
  26. Wang, Y. C., Tan, N. H., Zhou, J. and Wu, H. (1998) Cyclopeptides from Dianthus superbus. Phytochemistry 49, 1453-1456. https://doi.org/10.1016/S0031-9422(97)00857-1
  27. Yu, J. O., Liao, Z. X., Lei, J. C. and Hu, X. M. (2007) Antioxidant and cytotoxic activities of various fractions of ethanol extract of Dianthus superbus. Food Chem. 104, 1215-1219. https://doi.org/10.1016/j.foodchem.2007.01.039
  28. Yu, J. Q., Yin, Y., Lei, J. C., Zhang, X. Q., Chen, W., Ding, C. L., Wu, S., He, X. Y., Liu, Y. W. and Zou, G. L. (2012) Activation of apoptosis by ethyl acetate fraction of ethanol extract of Dianthus superbus in HepG2 cell line. Cancer Epidemiol. 36, e40-e45. https://doi.org/10.1016/j.canep.2011.09.004

Cited by

  1. Liquiritigenin ameliorates memory and cognitive impairment through cholinergic and BDNF pathways in the mouse hippocampus 2017, https://doi.org/10.1007/s12272-017-0954-6
  2. Organosulfur compound protects against memory decline induced by scopolamine through modulation of oxidative stress and Na+/K+ ATPase activity in mice 2017, https://doi.org/10.1007/s11011-017-0067-4
  3. Phytochemical and Pharmacological Role of Liquiritigenin and Isoliquiritigenin From Radix Glycyrrhizae in Human Health and Disease Models vol.10, pp.1663-4365, 2018, https://doi.org/10.3389/fnagi.2018.00348
  4. Ameliorates Cognitive Dysfunction Induced by Cholinergic Blockade in Mice vol.21, pp.10, 2018, https://doi.org/10.1089/jmf.2017.4131
  5. Cognitive enhancing and antioxidant effects of tetrahydroxystilbene glucoside in A β 1 - 42 -induced neurodegeneration in mice vol.17, pp.3-4, 2018, https://doi.org/10.3233/JIN-170059
  6. Butterbur Leaves Attenuate Memory Impairment and Neuronal Cell Damage in Amyloid Beta-Induced Alzheimer’s Disease Models vol.19, pp.6, 2018, https://doi.org/10.3390/ijms19061644
  7. Studies of the Anti-amnesic Effects and Mechanisms of Single and Combined Use of Donepezil and Ginkgo Ketoester Tablet on Scopolamine-Induced Memory Impairment in Mice vol.2019, pp.1942-0994, 2019, https://doi.org/10.1155/2019/8636835
  8. Therapeutic potential of selanyl amide derivatives in the in vitro anticholinesterase activity and in in vivo antiamnesic action vol.98, pp.5, 2016, https://doi.org/10.1139/cjpp-2019-0291
  9. Cancer Treatment by Caryophyllaceae-Type Cyclopeptides vol.11, pp.None, 2021, https://doi.org/10.3389/fendo.2020.600856
  10. Trichoderma reesei fungal degradation boosted the potentiality of date pit extract in fighting scopolamine-induced neurotoxicity in male rats vol.11, pp.1, 2016, https://doi.org/10.1038/s41598-021-94058-y