References
- Assmus, B., Honold, J., Schächinger, V., Britten, M. B., Fischer-Rasokat, U., Lehmann, R., Teupe, C., Pistorius, K., Martin, H., Abolmaali, N. D., Tonn, T., Dimmeler, S. and Zeiher, A. M. (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med. 355, 1222-1232. https://doi.org/10.1056/NEJMoa051779
- Baer, P. C., Griesche, N., Luttmann, W., Schubert, R., Luttmann, A. and Geiger, H. (2010) Human adipose-derived mesenchymal stem cells in vitro: evaluation of an optimal expansion medium preserving stemness. Cytotherapy 12, 96-106. https://doi.org/10.3109/14653240903377045
- Bartosh, T. J., Ylöstalo, J. H., Mohammadipoor, A., Bazhanov, N., Coble, K., Claypool, K., Lee, R. H., Choi, H. and Prockop, D. J. (2010) Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc. Natl. Acad. Sci. U.S.A. 107, 13724-13729. https://doi.org/10.1073/pnas.1008117107
- Bhang, S. H., Cho, S. W., La, W. G., Lee, T. J., Yang, H. S., Sun, A. Y., Baek, S. H., Rhie, J. W. and Kim, B. S. (2011) Angiogenesis in ischemic tissue produced by spheroid grafting of human adiposederived stromal cells. Biomaterials 32, 2734-2747. https://doi.org/10.1016/j.biomaterials.2010.12.035
- Bruder, S. P., Jaiswal, N. and Haynesworth, S. E. (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell. Biochem. 64, 278-294. https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F
- Burdick, J. A. and Vunjak-Novakovic, G. (2009) Engineered microenvironments for controlled stem cell differentiation. Tissue Eng. Part A 15, 205-219. https://doi.org/10.1089/ten.tea.2008.0131
- Chacko, S. M., Ahmed, S., Selvendiran, K., Kuppusamy, M. L., Khan, M. and Kuppusamy, P. (2010) Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am. J. Physiol. Cell Physiol. 299, C1562-C1570. https://doi.org/10.1152/ajpcell.00221.2010
- Cheng, N. C., Wang, S. and Young, T. H. (2012) The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials 33, 1748-1758. https://doi.org/10.1016/j.biomaterials.2011.11.049
- Cochrane, D. J., Stannard, S. R., Firth, E. C. and Rittweger, J. (2010) Comparing muscle temperature during static and dynamic squatting with and without whole-body vibration. Clin. Physiol. Funct. Imaging 30, 223-229. https://doi.org/10.1111/j.1475-097X.2010.00931.x
- Colter, D. C., Class, R., DiGirolamo, C. M. and Prockop, D. J. (2000) Rapid expansion of recycling stem cells in cultures of plasticadherent cells from human bone marrow. Proc. Natl. Acad. Sci. U.S.A. 97, 3213-3218. https://doi.org/10.1073/pnas.97.7.3213
- da Silva Meirelles, L., Chagastelles, P. C. and Nardi, N. B. (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204-2213. https://doi.org/10.1242/jcs.02932
- English, K., French, A. and Wood, K. J. (2010) Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell 7, 431-442. https://doi.org/10.1016/j.stem.2010.09.009
- Erices, A., Conget, P. and Minguell, J. J. (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol. 109, 235-242. https://doi.org/10.1046/j.1365-2141.2000.01986.x
- Fiorina, P., Jurewicz, M., Augello, A., Vergani, A., Dada, S., La Rosa, S., Selig, M., Godwin, J., Law, K., Placidi, C., Smith, R. N., Capella, C., Rodig, S., Adra, C. N., Atkinson, M., Sayegh, M. H. and Abdi, R. (2009) Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J. Immunol. 183, 993-1004. https://doi.org/10.4049/jimmunol.0900803
- Frisch, S. M. and Screaton, R. A. (2001) Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555-562. https://doi.org/10.1016/S0955-0674(00)00251-9
- Gonzalez, M. A., Gonzalez-Rey, E., Rico, L., Büscher, D. and Delgado, M. (2009) Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 136, 978-989. https://doi.org/10.1053/j.gastro.2008.11.041
- Grossmann, J. (2002) Molecular mechanisms of "detachment-induced apoptosis--Anoikis". Apoptosis 7, 247-260. https://doi.org/10.1023/A:1015312119693
- Hahn, J. Y., Cho, H. J., Kang, H. J., Kim, T. S., Kim, M. H., Chung, J. H., Bae, J. W., Oh, B. H., Park, Y. B. and Kim, H. S. (2008) Pretreatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J. Am. Coll. Cardiol. 51, 933-943. https://doi.org/10.1016/j.jacc.2007.11.040
- Han, Y. S., Lee, J. H., Jung, J. S., Noh, H., Baek, M. J., Ryu, J. M., Yoon, Y. M., Han, H. J. and Lee, S. H. (2015) Fucoidan protects mesenchymal stem cells against oxidative stress and enhances vascular regeneration in a murine hindlimb ischemia model. Int. J. Cardiol. 198, 187-195. https://doi.org/10.1016/j.ijcard.2015.06.070
- Haycock, J. W. (2011) 3D cell culture: a review of current approaches and techniques. Methods Mol. Biol. 695, 1-15. https://doi.org/10.1007/978-1-60761-984-0_1
- Hill, E., Boontheekul, T. and Mooney, D. J. (2006) Regulating activation of transplanted cells controls tissue regeneration. Proc. Natl. Acad. Sci. U.S.A. 103, 2494-2499. https://doi.org/10.1073/pnas.0506004103
- Hyun, I., Hochedlinger, K., Jaenisch, R. and Yamanaka, S. (2007) New advances in iPS cell research do not obviate the need for human embryonic stem cells. Cell Stem Cell 1, 367-368. https://doi.org/10.1016/j.stem.2007.09.006
- Le Blanc, K., Frassoni, F., Ball, L., Locatelli, F., Roelofs, H., Lewis, I. et al. (2008) Mesenchymal stem cells for treatment of steroidresistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371, 1579-1586. https://doi.org/10.1016/S0140-6736(08)60690-X
- Lee, E. J., Park, S. J., Kang, S. K., Kim, G. H., Kang, H. J., Lee, S. W., Jeon, H. B. and Kim, H. S. (2012) Spherical bullet formation via Ecadherin promotes therapeutic potency of mesenchymal stem cells derived from human umbilical cord blood for myocardial infarction. Mol. Ther. 20, 1424-1433. https://doi.org/10.1038/mt.2012.58
- Li, T. S., Cheng, K., Lee, S. T., Matsushita, S., Davis, D., Malliaras, K., Zhang, Y., Matsushita, N., Smith, R. R. and Marbán, E. (2010) Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells 28, 2088-2098. https://doi.org/10.1002/stem.532
- Li, W., Ma, N., Ong, L. L., Nesselmann, C., Klopsch, C., Ladilov, Y., Furlani, D., Piechaczek, C., Moebius, J. M., Lützow, K., Lendlein, A., Stamm, C., Li, R. K. and Steinhoff, G. (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25, 2118-2127. https://doi.org/10.1634/stemcells.2006-0771
- Limbourg, A., Korff, T., Napp, L. C., Schaper, W., Drexler, H. and Limbourg, F. P. (2009) Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nat. Protoc. 4, 1737-1746. https://doi.org/10.1038/nprot.2009.185
- Park, E. and Patel, A. N. (2010) Changes in the expression pattern of mesenchymal and pluripotent markers in human adipose-derived stem cells. Cell Biol. Int. 34, 979-984. https://doi.org/10.1042/CBI20100124
- Peterson, K. M., Aly, A., Lerman, A., Lerman, L. O. and Rodriguez-Porcel, M. (2011) Improved survival of mesenchymal stromal cell after hypoxia preconditioning: role of oxidative stress. Life Sci. 88, 65-73. https://doi.org/10.1016/j.lfs.2010.10.023
- Potapova, I. A., Brink, P. R., Cohen, I. S. and Doronin, S. V. (2008) Culturing of human mesenchymal stem cells as three-dimensional aggregates induces functional expression of CXCR4 that regulates adhesion to endothelial cells. J. Biol. Chem. 283, 13100-13107. https://doi.org/10.1074/jbc.M800184200
- Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., Pell, C. L., Johnstone, B. H., Considine, R. V. and March, K. L. (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109, 1292-1298. https://doi.org/10.1161/01.CIR.0000121425.42966.F1
- Rodriguez-Lozano, F. J., Bueno, C., Insausti, C. L., Meseguer, L., Ramirez, M. C., Blanquer, M., Marín, N., Martínez, S. and Moraleda, J. M. (2011) Mesenchymal stem cells derived from dental tissues. Int. Endod. J. 44, 800-806. https://doi.org/10.1111/j.1365-2591.2011.01877.x
- Rosova, I., Dao, M., Capoccia, B., Link, D. and Nolta, J. A. (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26, 2173-2182. https://doi.org/10.1634/stemcells.2007-1104
- Salem, H. K. and Thiemermann, C. (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28, 585-596.
- Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S. and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147. https://doi.org/10.1126/science.282.5391.1145
- Tolar, J., Le Blanc, K., Keating, A. and Blazar, B. R. (2010) Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 28, 1446-1455. https://doi.org/10.1002/stem.459
- Tseng, T. C. and Hsu, S. H. (2014) Substrate-mediated nanoparticle/ gene delivery to MSC spheroids and their applications in peripheral nerve regeneration. Biomaterials 35, 2630-2641. https://doi.org/10.1016/j.biomaterials.2013.12.021
- Wang, C. C., Chen, C. H., Hwang, S. M., Lin, W. W., Huang, C. H., Lee, W. Y., Chang, Y. and Sung, H. W. (2009a) Spherically symmetric mesenchymal stromal cell bodies inherent with endogenous extracellular matrices for cellular cardiomyoplasty. Stem Cells 27, 724-732. https://doi.org/10.1634/stemcells.2008-0944
- Wang, W., Itaka, K., Ohba, S., Nishiyama, N., Chung, U. I., Yamasaki, Y. and Kataoka, K. (2009b) 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials 30, 2705-2715. https://doi.org/10.1016/j.biomaterials.2009.01.030
- Yamaguchi, Y., Ohno, J., Sato, A., Kido, H. and Fukushima, T. (2014) Mesenchymal stem cell spheroids exhibit enhanced in-vitro and invivo osteoregenerative potential. BMC Biotechnol. 14, 105. https://doi.org/10.1186/s12896-014-0105-9
- Yeh, H. Y., Liu, B. H., Sieber, M. and Hsu, S. H. (2014) Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC Genomics 15, 10. https://doi.org/10.1186/1471-2164-15-10
- Ylostalo, J. H., Bartosh, T. J., Coble, K. and Prockop, D. J. (2012) Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem Cells 30, 2283-2296. https://doi.org/10.1002/stem.1191
- Yoon, H. H., Bhang, S. H., Shin, J. Y., Shin, J. and Kim, B. S. (2012) Enhanced cartilage formation via three-dimensional cell engineering of human adipose-derived stem cells. Tissue Eng. Part A 18, 1949-1956. https://doi.org/10.1089/ten.tea.2011.0647
- Zhang, M., Methot, D., Poppa, V., Fujio, Y., Walsh, K. and Murry, C. E. (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol. 33, 907-921. https://doi.org/10.1006/jmcc.2001.1367
- Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P. and Hedrick, M. H. (2002) Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13, 4279-4295. https://doi.org/10.1091/mbc.E02-02-0105
- Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P. and Hedrick, M. H. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211-228. https://doi.org/10.1089/107632701300062859
Cited by
- Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases vol.8, pp.1, 2017, https://doi.org/10.1186/s13287-017-0578-2
- The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids vol.8, pp.1, 2017, https://doi.org/10.1186/s13287-017-0558-6
- Biomaterial-Free Three-Dimensional Bioprinting of Cardiac Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05018-4
- Spheroids as vascularization units: From angiogenesis research to tissue engineering applications vol.35, pp.6, 2017, https://doi.org/10.1016/j.biotechadv.2017.07.002
- Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways vol.150, 2017, https://doi.org/10.1016/j.jprot.2016.10.002
- Cell secretome based approaches in Parkinson’s disease regenerative medicine vol.18, pp.12, 2018, https://doi.org/10.1080/14712598.2018.1546840
- Two-Cell Spheroid Angiogenesis Assay System Using Both Endothelial Colony Forming Cells and Mesenchymal Stem Cells vol.26, pp.5, 2018, https://doi.org/10.4062/biomolther.2018.134
- Aggregation of human dental pulp cells into 3D spheroids enhances their migration ability after reseeding vol.234, pp.1, 2018, https://doi.org/10.1002/jcp.26927
- Mesenchymal Stem Cell Functionalization for Enhanced Therapeutic Applications pp.1937-3376, 2018, https://doi.org/10.1089/ten.teb.2018.0118
- Bioprocessing of Mesenchymal Stem Cells and Their Derivatives: Toward Cell-Free Therapeutics vol.2018, pp.1687-9678, 2018, https://doi.org/10.1155/2018/9415367
- Nanoparticles for Detection and Treatment of Peripheral Arterial Disease vol.14, pp.32, 2018, https://doi.org/10.1002/smll.201800644
- Study of oxygen tension variation within live tumor spheroids using microfluidic devices and multi-photon laser scanning microscopy vol.8, pp.53, 2018, https://doi.org/10.1039/C8RA05505J
- Cellular Spheroids of Mesenchymal Stem Cells and Their Perspectives in Future Healthcare vol.9, pp.4, 2019, https://doi.org/10.3390/app9040627
- Therapeutic Potential of Human Mesenchymal Stem Cells for Treating Ischemic Limb Diseases vol.9, pp.2, 2016, https://doi.org/10.15283/ijsc16053
- Enhanced Osteogenic Differentiation Potential of Stem-Cell Spheroids Created From a Coculture of Stem Cells and Endothelial Cells vol.26, pp.6, 2017, https://doi.org/10.1097/id.0000000000000685
- Extracellular matrix dynamics during mesenchymal stem cells differentiation vol.437, pp.2, 2018, https://doi.org/10.1016/j.ydbio.2018.03.002
- Osteogenic potential of cell spheroids composed of varying ratios of gingiva-derived and bone marrow stem cells using concave microwells vol.16, pp.3, 2016, https://doi.org/10.3892/etm.2018.6462
- Serum-Free Culture System for Spontaneous Human Mesenchymal Stem Cell Spheroid Formation vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6041816
- Therapeutic Effect of a Xeno-Free Three-Dimensional Stem Cell Mass in a Hind Limb Ischemia Model vol.25, pp.5, 2019, https://doi.org/10.1089/ten.tea.2018.0089
- Current Strategies to Enhance Adipose Stem Cell Function: An Update vol.20, pp.15, 2016, https://doi.org/10.3390/ijms20153827
- Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells vol.11, pp.10, 2016, https://doi.org/10.4252/wjsc.v11.i10.748
- Three-Dimensional Compaction Switches Stress Response Programs and Enhances Therapeutic Efficacy of Endometrial Mesenchymal Stem/Stromal Cells vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.00473
- Early Vascular Cells Improve Microvascularization Within 3D Cardiac Spheroids vol.26, pp.2, 2016, https://doi.org/10.1089/ten.tec.2019.0228
- Dual Bioelectrical Assessment of Human Mesenchymal Stem Cells Using Plasma and Mitochondrial Membrane Potentiometric Probes vol.2, pp.3, 2016, https://doi.org/10.1089/bioe.2020.0006
- In Situ Formation of Proangiogenic Mesenchymal Stem Cell Spheroids in Hyaluronic Acid/Alginate Core-Shell Microcapsules vol.6, pp.12, 2020, https://doi.org/10.1021/acsbiomaterials.0c01489
- Secretome effect of adipose tissue-derived stem cells cultured two-dimensionally and three-dimensionally in mice with streptozocin induced type 1 diabetes vol.2, pp.None, 2016, https://doi.org/10.1016/j.crphar.2021.100069
- Functional Properties of Human-Derived Mesenchymal Stem Cell Spheroids: A Meta-Analysis and Systematic Review vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8825332
- Increased Mesenchymal Stem Cell Functionalization in Three-Dimensional Manufacturing Settings for Enhanced Therapeutic Applications vol.9, pp.None, 2016, https://doi.org/10.3389/fbioe.2021.621748
- Comparison of Pluripotency, Differentiation, and Mitochondrial Metabolism Capacity in Three-Dimensional Spheroid Formation of Dental Pulp-Derived Mesenchymal Stem Cells vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5540877
- The Duo of Osteogenic and Angiogenic Differentiation in ADSC-Derived Spheroids vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.572727
- Effects of Mesenchymal Stem Cell‐Derived Paracrine Signals and Their Delivery Strategies vol.10, pp.7, 2016, https://doi.org/10.1002/adhm.202001689
- Advances in removing mass transport limitations for more physiologically relevant in vitro 3D cell constructs vol.2, pp.2, 2016, https://doi.org/10.1063/5.0048837
- Biomaterials-assisted spheroid engineering for regenerative therapy vol.54, pp.7, 2016, https://doi.org/10.5483/bmbrep.2021.54.7.059
- Bioengineering of a scaffold-less three-dimensional tissue using net mould vol.13, pp.4, 2016, https://doi.org/10.1088/1758-5090/ac23e3
- Co‐delivery of fibrin‐laminin hydrogel with mesenchymal stem cell spheroids supports skeletal muscle regeneration following trauma vol.15, pp.12, 2016, https://doi.org/10.1002/term.3243
- Impact of 3D cell culture on bone regeneration potential of mesenchymal stromal cells vol.12, pp.1, 2016, https://doi.org/10.1186/s13287-020-02094-8
- Modulation of Mesenchymal Stem Cells for Enhanced Therapeutic Utility in Ischemic Vascular Diseases vol.23, pp.1, 2022, https://doi.org/10.3390/ijms23010249