DOI QR코드

DOI QR Code

A Study on Modified Average Filter using Standard Deviation of Local Mask in AWGN Environments

AWGN 환경에서 국부 마스크의 표준편차를 이용한 변형된 평균 필터에 관한 연구

  • Kwon, Se-Ik (Dept. of Control and Instrumentation Eng., Pukyong National University) ;
  • Kim, Nam-Ho (Dept. of Control and Instrumentation Eng., Pukyong National University)
  • Received : 2016.01.18
  • Accepted : 2016.03.22
  • Published : 2016.04.30

Abstract

Recently, with the rapid demand expansion on the devices of digital image processing, the excellent quality of the images is required. However, the degradation of the images occurs in the processes of data acquisition, processing, and transmission by various external causes and the noise has been well known as the major cause of image degradation. There are a variety of noises to be added on the images, with typical example of AWGN. Hence, in this article, we suggested average filter algorithm processed by the threshold values using them applying standard deviation of local mask under the AWGN environment in this study. As the result of the simulation, The proposed algorithm shows a high PSNR of 24.56[dB] for Barbara images that had been damaged of AWGN(${\sigma}=15$), compared to the existing MF, CWMF and AWMF there were improvements by 3.34[dB], 2.57[dB], and 3.32[dB], respectively.

최근, 디지털 영상처리 장치에 대한 수요가 급격히 증대되면서 영상의 우수한 화질이 요구되고 있다. 그러나 디지털 영상을 획득, 처리, 전송하는 과정에서 여러 외부 원인에 의해 영상의 열화가 발생되며, 영상 열화의 주된 원인은 잡음에 의한 것으로 알려져 있다. 영상에 첨가되는 잡음에는 다양한 종류가 있으며 AWGN이 대표적이다. 따라서 본 논문에서는 AWGN 환경에서 국부 마스크의 표준편차를 적용한 임계값을 사용하여, 그 값에 따라 서로 다르게 처리하는 평균필터 알고리즘을 제안하였다. 시뮬레이션 결과, 제안한 알고리즘은 AWGN(${\sigma}=15$)인 Baboon 영상에서 24.56[dB]의 높은 PSNR을 보이고 있고, 기존의 MF, CWMF, AWMF에 비해 각각 3.34[dB], 2.57[dB], 3.32[dB] 개선되었다.

Keywords

References

  1. R. C. Gonzalez and R.E. woods, Digital Image Processing, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2008.
  2. K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and Applications, 1st ed. Berlin, Germany: Springer, 2000.
  3. Xu Long and Nam-Ho Kim, "A Study on the Spatial Weighted Filter in AWGN Environment," JICCE, vol.17, no.3, pp.724-729, Mar. 2013.
  4. Xu Long and Nam-Ho Kim, "An Improved Weighted Filter for AWGN Removal," JICCE, vol.17, no.5, pp.1227-1232, May 2013.
  5. Xu Long and Nam-Ho Kim, "A Study on Image Restoration Filter in AWGN Environments," JICCE, vol.18, no.4, pp.949-956, Apr. 2014.
  6. Yinyu Gao and Nam-Ho Kim, "A Study on Improved Denoising Algorithm for Edge Preservation in AWGN Environments," JICCE, vol. 16, no. 8, pp.1773-1778, Aug. 2012.
  7. Jiahui Wang and Jingxing Hong, "a New Selt-Adaptive Weighted Filter for Removing Noise in Infrared images," IEEE Information Engineering and Computer Science, ICIECS International Conference, pp.1-4, Dec. 2009.
  8. Se-Ik Kwon and Nam-Ho Kim, "A Study on Modified Spatial Weighted Filter in Mixed Noise Environments," JICCE, vol.19, no.1, pp.237-243, Jan. 2015.
  9. Xu Long and Nam-Ho Kim, "An Image Restoration using Nonlinear Filter in Mixed Noise Environment," JICCE, vol.17, no.10, pp.2447-2453, Oct. 2013.