DOI QR코드

DOI QR Code

Estimation of Extreme Wind Speeds in Korean Peninsula using Typhoon Monte Carlo Simulation

태풍 시뮬레이션을 통한 한반도 극한풍속 추정

  • Lee, Sungsu (School of Civil Engineering, Chungbuk National University) ;
  • Kim, Ga Young (Department of Civil Systems Engineering, Chungbuk National University)
  • 이승수 (충북대학교 토목공학부) ;
  • 김가영 (충북대학교 토목시스템공학과)
  • Received : 2015.10.12
  • Accepted : 2015.12.19
  • Published : 2016.04.29

Abstract

The long-span bridges such as Incheon Bridge and Seohae Grand Bridge are located on the coastal region effected frequently by strong wind of typhoons. In order to ensure the wind-resistant performance of the structure, estimation of the proper design wind speed is very important. In this study, stochastic estimation of design wind speed incurred by typhoons is carried out. For this purpose, we first established probability distribution of climatological parameters such as central pressure depth, distance of closest approach, translation speed and heading to build statistical model of typhoons, which are employed in Monte Carlo simulation for hypothetical typhoons. Once a typhoon is generated with statistically justified parameters, wind speeds are estimated along its path using wind field model. Thousands of typhoons are generated and their peak wind speeds are utilized to establish the extreme wind speeds for different return period. The results are compared with design basic wind speeds in Korean Highway Bridge Design Code, showing that the present results agree well with similar studies while the existing code suggests higher design wind speed.

국내 서해대교, 인천대교와 같은 장대교량은 대부분 빈번하게 태풍에 의해 영향을 받는 해안에 위치하였으며, 교량의 길이가 긴 만큼 풍하중에 의한 영향이 다른 하중에 비해 상대적으로 크기 때문에 내풍 안정성을 확보하기 위해 정확한 설계풍속을 산정하는 것이 매우 중요하다. 본 연구에서는 태풍의 기후학적 특성 인자로 중심기압깊이, 태풍이동속도, 태풍이동방향, 최단접근거리를 결정하였으며, 태풍의 기후학적 특성들의 확률 분포를 추정하고, 바람장 모형과 중심기압상승 모형을 적용하여 몬테카를로 시뮬레이션을 실시하였다. 분석결과, 대체적으로 제주도와 남해안 지역의 재현기간 풍속이 크게 나오며 고위도로 갈수록 작아지는 특징을 나타냈다. 이와 같은 특징이 나타난 가장 큰 원인은 고위도 분석지점 표본 태풍의 중심기압이 저위도 분석지점 표본 태풍의 중심기압보다 높기 때문으로 판단되며, 또한 우리나라에 해상에서 육지로 이동하면서 쇠퇴기를 겪어 점차 약해지기 때문인 것으로 분석되었다. 또한, 시뮬레이션 결과를 도로교 설계기준 100년 재현기간 풍속(10분 평균, 지상 10m, 지표조도 II)과 비교한 결과, 태풍시뮬레이션의 결과가 낮게 나타났으며, 이러한 점을 볼 때 도로교 설계기준의 기본 풍속이 높게 산정되어 있다고 판단되며, 기상자료 분석과 같은 추가적인 연구를 통해 기본풍속 조정에 대한 연구가 수행 되어야 할 것으로 사료된다.

Keywords

References

  1. American Society of Civil Engineers (1990) ASCE 7-88 Standards, Minimum Design Loads for Buildings and Other Structures, New York, United States of America, p.94.
  2. Batts, M.E., Simiu, E., Russell, L.R. (1980) Hurricane Wind Speeds in the United States, J. Struct. Div., ASCE, 106(10), pp.2001-2016.
  3. Cho, H.N., Cha, C.J., Baik, H.S. (1989) Probability-based Estimation of Basic Design Wind Speeds in Korea, J. Comput. Struct. Eng. Inst. Korea, 2(2), pp.63-72.
  4. Fujii, T. (1998) Statistical Analysis of the Characteristics of Severe Typhoons Hitting the Japanese Main Islands, Monthly Weather Review, 126(4), pp.1091-1097. https://doi.org/10.1175/1520-0493(1998)126<1091:SAOTCO>2.0.CO;2
  5. Georgiou, P.N., Davenport, A.G., Vickery, B.J. (1983) Design Wind Speeds Regions Dominated by Tropical Cyclones, J. Wind Eng. & Industrial Aerodyn., 13(1-3), pp.139-152. https://doi.org/10.1016/0167-6105(83)90136-8
  6. Graham, H.E., Nunn, D.E. (1959) Meterological Considerations Pertinent to Standard Project Hurricane, Atlantic and Gulf Coasts of the United States, National Hurricane Research Project Report, Report No.33, U.S. Weater Bureau, Washington, D.C, p.76.
  7. Haun, Z., Rosowsky, D.V., Sparks, P.R. (2001) Hurricane Simulation Techniques for the Evaluation of Wind-speeds and Expected Insurance losses, J. Wind Eng. & Industrial Aerodyn., 89(7-8), pp.605-617. https://doi.org/10.1016/S0167-6105(01)00061-7
  8. Kim, H.S., Lee, H.H., Cho, D.Y., Park, S.K. (2011) Estimation of Design Wind Speed Compatible for Long-span Bridege in Western and Southern Sea, J. Korea Inst. Struct. Maint. & Insp., 15(2), pp.153-160. https://doi.org/10.11112/jksmi.2011.15.2.153
  9. Kim, S.C., Kim, Y.S., Yang, Y.T. (2005) Assessment of Severe Local Storm Risks in Ulsan Area using Monte Carlos Typhoon Simulation Method and CFD Model, J. Wind Eng. & Industrial Aerodyn., 9(1), pp.45-54.
  10. Kwon, S.D., Lee, J.H. (2008) Estimation of Extreme Wind Speeds in Southern and Western Coasts by Typhoon Simulation, J. Korean Soc. Civil Eng., 28(4), pp.431-438.
  11. Kwon, S.D., Lee, S.L. (2009) Estimation of Design Wind Velocity Based on Short Term Measurements, J. Korean Soc. Civil Eng., 29(3A), pp.209-216.
  12. Lee, S.L., Kim, S.W. (2013) Estimation of Basic Wind Speed at Bridge Construction Site Based on short-term Measurements, J. Korean Soc. Civil Eng., 33(4), pp.1271-1279. https://doi.org/10.12652/Ksce.2013.33.4.1271
  13. Lee, Y.K. (2009) Development of Model for Wind Hazard Assessment Based on Geographical Information, ph. D. Dissertation, Chungbuk National University, p.219.
  14. Lee, Y.K., Lee, S. (2008) Estimation of surface Wind during Typhoon around Korean Peninsula, J. Wind Eng. & Industrial Aerodyn., 12(2), pp.121-128.
  15. Lee, Y.K., Lee, S., Park, C.W. (2007) Analysis on Radii of Maximum Sustained Winds of Typhoons around Korean Peninsula, J. Wind Eng. & Industrial Aerodyn., 11(2), pp.203-210.
  16. Lee, Y.K., Lee, S., Ham, H.J., Bienkiewicz, B. (2009) Estimation of Design Wind Speed for Offshore Structures, J. Wind Eng. & Industrial Aerodyn., 13(3), pp.129-135.
  17. Ministry of Land, Transport and Maritime Affairs(MLTMA) (2010) Korean Highway Bridge Design Code (in Korean). Korea Road & Transpotation Association, p.6-49.
  18. National Emergency Management Agency (2014) Disaster Annals, 11-1750000-000031-10, Ministry of Public Safety and Security, p.722.
  19. National Oceanic and Atmospheric Adminsitration (1972) Revised Standard Project Hurricane Criteria for the Atlantic and Gulf Coasts of the United States, Memorandum HUR7-120, U.S. Department of Commerce, p.47.
  20. National Typhoon Center, http://typ.kma.go.kr/TYPHOON/statistics/statistics_02_3.jsp/ (Accessed: June, 10, 2015).
  21. Russell, L.R. (1971) Probability Distributions for Hurricane Effects. J. Waterw. Harbors & Coastal Eng., ASCE, 97(1), pp.139-154.
  22. Sanchez-Sesma, J., Aguirre, J., Sen, M. (1988) Simple Modeling Procedure for Estimation of Cyclonic Wind Speeds, J. Struct. Eng., ASCE, 114(2), pp.352-370 https://doi.org/10.1061/(ASCE)0733-9445(1988)114:2(352)
  23. Schloemer, R.W. (1954) Analysis and Synthesis of Hurricane Wind Patterns over Lake Okechobee, Florida. Hydrometeorological Report No.31, U.S. Dept. of Commerce, Weather Bureau, Washington, D.C, p.49.
  24. Simiu, E., Scanlan, R.H. (1996) Wind effects on structures, Wiley Interscience, New York, p.688.
  25. Vickery, P.J., Twisdale. L.A. (1995a) Prediction of Hurricane Wind Speeds in the United States, J. Struct. Eng., 121(11), pp.1691-1699. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:11(1691)
  26. Vickery, P.J., Twisdale, L.A. (1995b) Wind Field and Filling Models for Hurricane Wind-speed Predictions, J. Struct. Eng., 121(11), pp.1700-1709. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:11(1700)