DOI QR코드

DOI QR Code

Development of a Rapid Foodborne-pathogen-detection Method Involving Whole-genome Amplification

Whole genome amplification을 이용한 식중독 세균 신속 검출 기술 개발

  • 성지영 (국민대학교 자연과학대학 식품영양학과) ;
  • 고영준 (솔젠트(주) 연구기획팀) ;
  • 명현군 (솔젠트(주) 연구기획팀) ;
  • 오세욱 (국민대학교 자연과학대학 식품영양학과)
  • Received : 2016.02.04
  • Accepted : 2016.03.30
  • Published : 2016.04.30

Abstract

In this study, polyethylene glycol (PEG) was used to improve DNA amplification efficiency during whole genome amplification (WGA). Amplification efficiency was determined by adding PEG with different molecular weights to the WGA reaction. The greatest increase in amplification efficiency was obtained with PEG 4,000 used at 1.5% concentration. Foodborne pathogenic DNA was amplified by WGA and quantitatively analyzed by real-time polymerase chain reaction. DNA of Salmonella serotype Typhimurium, Listeria monocytogenes, and Vibrio parahaemolyticus was amplified 7,777.01, 9,981.22, and 1,239.03 fold, respectively, by WGA. On adding PEG in the WGA reaction (i.e., enhanced WGA [eWGA]), 18-40-fold more DNA amplification was achieved. Thus, these analyses showed that foodborne pathogens, which are usually present at very low concentration in foods, can be detected by real-time PCR and WGA.

PEG를 이용하여 WGA 수행 시 DNA 증폭 효율을 높이고 이를 식중독 세균의 DNA 증폭 및 검출에 적용하고자 하였다. 등온 증폭 반응인 WGA에 여러 종류의 PEG를 첨가하여 증폭한 결과, 1.5% 농도의 PEG 4,000을 첨가하는 것이 가장 효율이 높음을 알 수 있었다. 증폭 정도를 정량적으로 파악하기 위하여 3종의 식중독 세균 DNA를 이용하여 WGA를 수행하였으며 real-time PCR로 정량분석하였다. S. Typhimurium, L. monocytogenes, V. parahaemolyticus의 경우에 WGA를 하지 않은 DNA에 비하여 각각 7,777.01배, 9,981.22배, 1,239.03배 정도로 DNA의 양이 증폭되는 것을 확인하였다. 또한 PEG를 첨가함으로써 18배에서 40배의 핵산 증폭 효과가 더 있음을 알 수 있었다. 따라서 식품에 미량의 농도로 존재하는 식중독 세균은 PEG가 첨가된 WGA 반응을 통하여 검출 가능성을 높일 수 있음을 알 수 있었다.

Keywords

References

  1. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H. Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 139: S3-S15 (2010) https://doi.org/10.1016/j.ijfoodmicro.2010.01.021
  2. Ministry of Food and Drug Safety. Food Safety Information. Available from: http://www.foodsafetykorea.go.kr/portal/healthyfoodlife/foodPoisoningStat.do?menu_no=519&menu_grp= MENU_GRP02. Accessed Jan. 12, 2016.
  3. Crim SM, Iwamoto M, Huang JY, Griffin PM, Gilliss D, Cronquist AB, Cartter M, Tobin-D'Angelo M, Blythe D, Smith K, Lathrop S, Zansky S, Cieslak PR, Dunn J, Holt KG, Lance S, Tauxe R, Henao OL. Incidence and trends of infection with pathogens transmitted commonly through food-foodborne diseases active surveillance Network, 10 U.S. sites, 2006-2013. MMWR Morb. Mortal. Wkly Rep. 63: 328-32 (2014)
  4. Bohaychuk VM, Gensler GE, McFall ME, King RK, Renter DG. A real-time PCR assay for the detection of Salmonella in a wide variety of food and food-animal matrices. J. Food Prot. 70: 1080-1087 (2007) https://doi.org/10.4315/0362-028X-70.5.1080
  5. Handyside AH, Robinson MD, Simpson RJ, Omar MB, Shaw MA, Grudzinskas JG, Rutherford A. Isothermal whole genome amplification from single and small numbers of cells: A new era for preimplantation genetic diagnosis of inherited disease. Mol. Hum. Reprod. 10: 767-772 (2004) https://doi.org/10.1093/molehr/gah101
  6. Eckert KA, Kunkel TA. DNA polymerase fidelity and the polymerase chain reaction. Genome Res. 1: 17-24 (1991) https://doi.org/10.1101/gr.1.1.17
  7. Uda A, Tanabayashi K, Fujita O, Hotta A, Yamamoto Y, Yamada A. Comparison of whole genome amplification methods for detecting pathogenic bacterial genomic DNA using microarray. Jpn. J. Infect. Dis. 60: 355-361 (2007)
  8. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA. 99: 5261-5266 (2002) https://doi.org/10.1073/pnas.082089499
  9. Barker DL, Hansen MST, Faruqi AF, Giannola D, Irsula OR, Lasken RS, Latterich M, Makarov V, Oliphant A, Pinter JH, Shen R, Sleptsova I, Ziehler W, Lai E. Two methods of wholegenome amplification enable accurate genotyping across a 2320- SNP linkage panel. Genome Res. 14: 901-907 (2004) https://doi.org/10.1101/gr.1949704
  10. Dietmaier W, Hartmann A, Wallinger S, Heinmöller E, Kerner T, Endl E, Jauch KW, Hofstädter F, Rüschoff J. Multiple mutation analyses in single tumor cells with improved whole genome amplification. Am. J. Pathol. 154: 83-95 (1999) https://doi.org/10.1016/S0002-9440(10)65254-6
  11. Lasken RS, Egholm M. Whole genome amplification: Abundant supplies of DNA from precious samples or clinical specimens. Trends Biotechnol. 21: 531-535 (2003) https://doi.org/10.1016/j.tibtech.2003.09.010
  12. Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N. Whole genome amplification from a single cell: Implications for genetic analysis. Proc. Natl. Acad. Sci. USA. 89: 5847-5851 (1992) https://doi.org/10.1073/pnas.89.13.5847
  13. Ellis RJ. Macromolecular crowding: Obvious but underappreciated. Trends Biochem. Sci. 26: 597-604 (2001) https://doi.org/10.1016/S0968-0004(01)01938-7
  14. Maheux AF, Bissonnette L, Boissinot M, Bernier JLT, Huppe V, Picard FJ, Berube E, Bergeron MG. Rapid concentration and molecular enrichment approach for sensitive detection of Escherichia coli and shigella species in potable water samples. Appl. Environ. Microbiol. 77: 6199-6207 (2011) https://doi.org/10.1128/AEM.02337-10
  15. Renard A, di Marco PG, Egea-Cortines M, Weiss J. Application of whole genome amplification and quantitative PCR for detection and quantification of spoilage yeasts in orange juice. Int. J. Food Microbiol. 126: 195-201 (2008) https://doi.org/10.1016/j.ijfoodmicro.2008.05.021
  16. Bachmann B, Luke W, Hunsmann G. Improvement of PCR amplified DNA sequencing with the aid of detergents. Nucleic Acids Res. 18: 1309 (1990) https://doi.org/10.1093/nar/18.5.1309
  17. Pomp D, Medrano JF. Organic solvents as facilitators of polymerase chain reaction. Biotechniques 10: 58-59 (1991)
  18. Musso M, Bocciardi R, Parodi S, Ravazzolo R, Ceccherini I. Betaine, dimethyl sulfoxide, and 7-deaza-dGTP, a powerful mixture for amplification of GC-rich DNA sequences. J. Mol. Diagn. 8: 544-550 (2006) https://doi.org/10.2353/jmoldx.2006.060058
  19. Mamedov TG, Pienaar E, Whitney SE, TerMaat JR, Carvill G, Goliath R, Subramanian A, Viljoen HJ. A fundamental study of the PCR amplification of GC-rich DNA templates. Comput. Biol. Chem. 32: 452-457 (2008) https://doi.org/10.1016/j.compbiolchem.2008.07.021