DOI QR코드

DOI QR Code

젖산균과 효소제 처리에 의한 동계사료작물 발효성상, In vitro 반추위 발효 및 소화율에 미치는 영향 연구

Effect of Lactic acid bacteria and Enzyme Supplementation on Fermentative Patterns of Ensiling Silages, Their In vitro Ruminal Fermentation, and Digestibility

  • 투고 : 2016.01.01
  • 심사 : 2016.02.18
  • 발행 : 2016.03.31

초록

본 연구는 청보리와 트리티케일에 L. plantarum, L. plantarum과 L. buchneri가 혼합된 접종원을 각각 첨가한 사일리지에 섬유소 분해효소를 첨가하여 사일리지 품질, 반추위 발효 패턴 및 소화율을 조사하였다. 두 초종의 사일리지 건물함량과 조단백질 함량은 전반적으로 청보리 사일리지가 높게 조사 되었으며(p<0.01), 트리티케일 사일리지 처리구에서는 섬유소 분해효소의 첨가가 유의적으로 낮은 NDF 함량을 나타내었다(p<0.01). 청보리와 트리티케일 사일리지에서 유기산 (젖산 및 초산)의 함량은 대조구에 비해 타 처리구들이 유의적으로 높았으며(p<0.01), L. plantarum을 접종균주로 사용한 처리구에서 유의적으로 높은 젖산 함량을 나타내었다(p<0.01). 사일리지 내 lactic acid bacteria는 두 초종 모두 섬유소 분해효소를 첨가한 처리구에서 높게 나타났으며, mold 생성량은 무첨가 대조구에 비해 처리구에서 낮게 조사되었다. 반추위 발효 패턴 및 소화율의 결과에서, 반추위 내 암모니아태 질소생성량은 청보리 사일리지에 L. plantarum과 L. buchneri를 혼합하여 접종한 처리구가 유의적으로 가장 높은 생성량을 나타냈다(p<0.01). 총 가스 생성량은 처리구별 유의적 차이는 없었으나, 효소첨가에 의해 증가하였다(p=0.003). 반추위 내 건물소화율은 청보리 사일리지 처리구에서 유의적으로 높게 조사되었으며(p<0.01), 트리티케일 사일리지는 혼합균주 L. plantarum과 L. buchneri에 섬유소 분해효소의 첨가한 처리구가 타 처리구 대비 유의적으로 높은 소화율을 보였다(p<0.01). 반추위 내 초산 생성량은 L. plantarum과 L. buchneri 를 접종한 처리구와 섬유소 분해효소를 첨가한 트리티케일 처리구에서 유의적으로 높게 조사되었다(p<0.01). 또한 총 휘발성 지방산은 청보리 사일리지 처리구의 균주 및 효소를 혼합 첨가한 처리구가 유의적으로 높았다(p<0.01). 본 연구를 통해 homofermentative LAB 보다 heterofermentative LAB가 안정적인 사일리지 발효에 기여하는 것을 확인 할 수 있었다. 그러나 반추동물의 사료효율 증대를 위한 대안으로 사용된 섬유소 분해효소를 이용한 효과는 초종에 따라 다양한 결과를 가지며, 효소의 적용에 대한 연구 및 균주와 효소의 상관관계에 관한 추가적인 연구가 필요할 것으로 사료된다.

The objective of this study was to determine the effect of bacterial inoculation (Lactobacillus plantarum or combo inoculant mixed with Lactobacillus plantarum and Lactobacillus buchneri) and addition of fibrolytic enzyme on chemical compositions and fermentation characteristics of whole crop barley (WCB) and triticale (TRT) silage, their ruminal in vitro fermentation, and digestibility. In TRT silage, enzyme addition significantly (p<0.01) decreased NDF content compared to no enzyme addition treatment. Organic acids such as lactate and acetate contents in WCB and TRT silages were significantly (p<0.01) higher compared to those in the control. Particularly, lactate content was the highest in L. plantarum treatment. Fibrolytic enzyme treatment on both silages had relatively higher lactic acid bacteria content, while mold content was lower in both treatments compared to that in the control. In vitro dry matter digestibility was generally improved in WCB silages. It was higher (p<0.01) in TRT with mixed treatment of L. plantarum, L. buchneri, and enzyme compared to others. In vitro ruminal acetate production was relatively higher in treatments with both enzyme and inoculant additions compared to that in the control. Therefore, the quality of silage and rumen fermentation could be improved by inoculants (L. plantarum and L. buchneri) regardless whether whole crop barley (WCB) or triticale (TRT) silage was used. Although it was found that fibrolytic enzyme addition to both silages had various quality and rumen fermentation values, further study is needed.

키워드

참고문헌

  1. Abdel-Rahman, M.A., Tashiro, Y., Zendo, T., Hanada, K., Shibata, K. and Sonomoto, K. 2011. Efficient homofermentative L-(+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Applied and Environmental Microbiology. 77:1892-1895. https://doi.org/10.1128/AEM.02076-10
  2. Addah, W., Baah, J., Okine, E.K. and McAllister, T.A. 2012. A third-generation esterase inoculant alters fermentation pattern and improves aerobic stability of barley silage and the efficiency of body weight gain of growing feedlot cattle. Journal of Animal Science. 90:1541-1552. https://doi.org/10.2527/jas.2011-4085
  3. Ahn, J.H., Kim, Y.J. and Kim, H.J. 2003. Effect of fibrolytic enzyme addition on ruminal fermentation, milk yield and milk composition of dairy cows. Journal of Animal Science and Technology. 45:131-142. https://doi.org/10.5187/JAST.2003.45.1.131
  4. AOAC. 1995. Official methods of analysis. 16th ed. Association of Official Analytical Chemists. Washington. DC.
  5. Beauchemin, K., Rode, L. and Sewalt, V. 1995. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Canadian Journal of Animal Science. 75:641-644. https://doi.org/10.4141/cjas95-096
  6. Beauchemin, K., Colombatto, D., Morgavi, D. and Yang, W. 2003. Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. Journal of Animal Science. 81:37-47.
  7. Chaney, A.L. and Marbach, E.P. 1962. Modified reagents for determination of urea and ammonia. Clinical Chemistry. 8:130-132.
  8. Cho, S., Kang, J.S., Cho, K.J., Lee, K.H., Kwon, C.H., Song, J., Lee, K., Kim, S.Y. and Kim, E.J. 2014. Effect of homo-fermentative and heterofermentative lactic acid bacteria on the quality and aerobic stability of silage : Meta-analysis. Journal of The Korean Society of Grassland and Forage Science. 34:247-253. https://doi.org/10.5333/KGFS.2014.34.4.247
  9. Colombatto, D., Mould, F.L., Bhat, M.K. and Owen, E. 2003. Use of fibrolytic enzymes to improve the nutritive value of ruminant diets: A biochemical and in vitro rumen degradation assessment. Animal Feed Science and Technology. 107:201-209. https://doi.org/10.1016/S0377-8401(03)00126-3
  10. Dean, D., Adesogan, A., Krueger, N. and Littell, R. 2008. Effects of treatment with ammonia or fibrolytic enzymes on chemical composition and ruminal degradability of hays produced from tropical grasses. Animal Feed Science and Technology. 145:68-83. https://doi.org/10.1016/j.anifeedsci.2007.05.053
  11. Erwin, E., Marco, G. and Emery, E. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. Journal of Dairy Science. 44:1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  12. Eun, J.S. and Beauchemin, K.A. 2007. Relationship between enzymic activities and in vitro degradation of alfalfa hay and corn silage. Animal Feed Science and Technology. 145:53-67.
  13. Feng, P., Hunt, C., Pritchard, G. and Julien, D.W. 1996. Effect of enzyme preparations on in situ and in vitro degradation and in vivo digestive characteristics of mature cool-season grass forage in beef steers. Journal of Animal Science. 74:1349-1357. https://doi.org/10.2527/1996.7461349x
  14. Filya, I. 2003. The effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages. Journal of Dairy Science. 86:3575-3581. https://doi.org/10.3168/jds.S0022-0302(03)73963-0
  15. Heinl, S., Wibberg, D., Eikmeyer, F., Szczepanowski, R., Blom, J., Linke, B., Goesmann, A., Grabherr, R., Schwab, H. and Puhler, A. 2012. Insights into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage. Journal of Biotechnology. 161:153-166. https://doi.org/10.1016/j.jbiotec.2012.03.007
  16. Hiltner, P. and Dehority, B. 1983. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Applied and Environmental Microbiology. 46:642-648.
  17. Kim, J.G., Ham, J.S., Chung, E.S., Park, H.S., Lee, J.K., Jung, M.W., Choi, K.C., Jo, N.C. and Seo, S. 2009. Evaluation of fermentation ability of microbes for whole crop barley silage inoculant. Journal of The Korean Society of Grassland and Forage Science. 29:235-244. https://doi.org/10.5333/KGFS.2009.29.3.235
  18. Krueger, N.A. and Adesogan, A.T. 2008. Effects of different mixtures of fibrolytic enzymes on digestion and fermentation of bahiagrass hay. Animal Feed Science and Technology. 145:84-94. https://doi.org/10.1016/j.anifeedsci.2007.05.041
  19. Lee, H.J., Kim, D.H., Amanullah, S.M., Kim, S.C., Song, Y.M. and Kim, H.Y. 2014. Effects of bacterial inoculants and cutting height on fermentation quality of barley silage. Journal of The Korean Society of Grassland Science. 34:163-168. https://doi.org/10.5333/KGFS.2014.34.3.163
  20. Marten, G.C., Goodrich, R.D., Schmid, A.R., Meiske, J.C., Jordan, R.M. and Linn, J.G. 1975. Evaluation of laboratory methods for determining quality of corn and sorghum silages: II. Chemical methods for predicting in vivo digestibility. Agronomy Journal. 67:247-251. https://doi.org/10.2134/agronj1975.00021962006700020019x
  21. McDougall, E. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochemical Journal. 43:99-109. https://doi.org/10.1042/bj0430099
  22. Miller, T.L. and Wolin, M. 1974. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. American Society for Microbiology. 27:985-987.
  23. Moore, J. 1970. Procedures for the two-stage in vitro digestion of forages. Nutrition Research Techniques for Domestic and Wild Animals. 1:5001-5003.
  24. Ok, J.U., Lee, S.M., Lee, S.J., Lim, J.H., Kang, T.W., Jung, H.Y., Moon, Y.H. and Lee, S.S. 2006. Effect of yeast addition in rice straw silage fermentation. Journal of Animal Science and Technonly. 48:691-698. https://doi.org/10.5187/JAST.2006.48.5.691
  25. SAS. 2002. Statistical Analysis System Version. 9.2. SAS Institute Inc., Cary, NC.
  26. Shinekhuu, J., Kim, K.L., Ji, B.J., Xiangzi, L., Oh, Y.K., Hong, S.K. and Song, M.K. 2009. Protein fractionation of whole crop silages, and effect of borate-phosphate buffer extraction on in vitro fermentation characteristics, gas production and degradation. Journal of Animal Science and Technology. 51:369-378. https://doi.org/10.5187/JAST.2009.51.5.369
  27. Stiles, D., Bartley, E., Meyer, R.E., Deyoe, C. and Pfost, H. 1970. Feed processing. VII. effect of an expansion-processed mixture of grain and urea (starea) on rumen metabolism in cattle and on urea toxicity 1, 2. Journal of Dairy Science. 53:1436-1447. https://doi.org/10.3168/jds.S0022-0302(70)86412-8
  28. Tilley, J. and Terry, R. 1963. A two stage technique for the in vitro digestion of forage crops. Grass and Forage Science. 18:104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  29. Van Soest, P.V., Robertson, J. and Lewis, B. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  30. Woolford, M.K. 1975. Microbiological screening of the straight chain fatty acids (c1-c12) as potential silage additives. Journal of The Science of Food and Agriculture. 26:219-228. https://doi.org/10.1002/jsfa.2740260213