DOI QR코드

DOI QR Code

H2O2 촉매 전환에 의해 생성된 건식산화제를 이용한 NO 산화에 관한 연구

A study on the NO oxidation using dry oxidant produced by the catalytic conversion of H2O2

  • 장정희 (고등기술연구원 플랜트엔지니어링센터) ;
  • 한기보 (고등기술연구원 플랜트엔지니어링센터)
  • Jang, Jung Hee (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Han, Gi Bo (Plant Engineering Center, Institute for Advanced Engineering)
  • 투고 : 2016.02.19
  • 심사 : 2016.03.22
  • 발행 : 2016.03.30

초록

본 연구에서는 촉매 상 $H_2O_2$ 전환에 의해 건식산화제가 생성되었으며, 이를 이용한 NO 산화 공정에 대한 연구를 진행하였다. 건식산화제를 생성하기 위한 $H_2O_2$ 촉매 전환에 관한 실험을 수행한 결과, Mn계 촉매의 성능이 가장 우수하였으며, 이를 통해 생성된 건식산화제를 NO 산화공정에 주입하여 다양한 운전조건에서 NO 산화특성을 조사하였다. 그 결과, $H_2O_2$ 주입량, 산화반응온도, 그리고 공간속도가 NO 산화율에 크게 영향을 미치는 것을 확인하였다. 그리고, 산화반응온도와 $H_2O_2$ 주입량이 증가할수록 NO 산화효율이 증가하였으며, 공간속도가 증가할수록 NO 산화효율이 감소하였다.

In this study, the NO oxidation using dry oxidant produced by catalytic $H_2O_2$ conversion was conducted. It was shown that Mn-based $Fe_2O_3$ support catalyst has the best performance in the catalytic $H_2O_2$ conversion and its combined-NO oxidation. The reaction characteristics of NO oxidation was investigated by the various operation conditions such as $H_2O_2$ amount, oxidation temperature and space velocity. As a results, the oxidation efficiency of NO greatly depends on the oxidation reaction temperature, $H_2O_2$ amount and space velocity. The performance of NO oxidation was increased with increasing the oxidation temperature and $H_2O_2$ amount. Also, the performance of NO oxidation was decreased with increasing the space velocity.

키워드

참고문헌

  1. Dahiya, R. P., Mishra, S. K. & Veefkind, A., Characterization and performance comparison of ripple-based control for voltage regulator modules., IEEE Trans. Plasma Sci., 21, 346-348 (1993). https://doi.org/10.1109/27.277562
  2. Jang, J. H., Choi, H. Y. & Han, G. B., Production of Dry Oxidant through Catalytic $H_2O_2$ Decomposition over Mn-based Catalysts for NO Oxidation., Clean Technology, 21, 2, 130-139 (2015). https://doi.org/10.7464/ksct.2015.21.2.130
  3. Lin, S. S. & Gurol, M. D., Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics Mechanism and Implications., Environ. Sci. Technol., 32, 10, 1417-1423 (1998). https://doi.org/10.1021/es970648k
  4. Lousada, C. M. & Jonsson, M., Kinetics Mechanism and Activation Energy of $H_2O_2$ Decomposition on the Surface of ., J. Phys. Chem. C., 114, 25, 11202-11208 (2010). https://doi.org/10.1021/jp1028933
  5. Pham, A. L.-T., Lee, C., Doyle, F. M. & Sedlak, D. L. A., Silica-Supported Iron Oxide Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH Values., Environ. Sci. Technol., 43, 8930-8935 (2009). https://doi.org/10.1021/es902296k
  6. Adewuyi, Y. G. & Owusu, S. O., Ultrasound-Induced Aqueous Removal of Nitric Oxide from Flue Gases: Effects of Sulfur Dioxide, Chloride, and Chemical Oxidant, J. Phys. Chem. A., 110, 38, 11098-11107 (2006).
  7. Ding, J., Zhong, Q., Zhang, S., Song, F., & Bu, Y., Simultaneous Removal of $NO_X\, and\, SO_2$ from Coal-Fired Flue Gas by Catalytic Oxidation-Removal Process with $H_2O_2$., Chem. Eng. J., 243, 176-182 (2014). https://doi.org/10.1016/j.cej.2013.12.101
  8. Ding, J., Zhong, Q. & Zhang, S., Simultaneous Removal of $NO_X$ and $SO_2$ with $H_2O_2$ over Fe Based Catalysts at Low Temperature., RSC Advances., 4, 5394 (2014). https://doi.org/10.1039/c3ra46418k
  9. Hermanek, M., Zboril, R., Medrik, I., Pechousek, J. & Gregor, C., Catalytic Efficiency of Iron(III) Oxides in Decomposition of Hydrogen Peroxide: Competition Between the Surface Area and Crystallinity of Nanoparticles., J. Am. Chem. Soc., 129, 10929-10936 (2007). https://doi.org/10.1021/ja072918x
  10. Choudhary, V. R., Samanta, C. & Jana, P., Hydrogenation of Hydrogen Peroxide over Palladium/Carbon in Aqueous Acidic Medium Containing Different Halide Anions under Static/Flowing Hydrogen., Ind. Eng. Chem. Res., 12,33, 2230-2245 (2007).
  11. H. F. Schmidt, M. Meuris, P. W. Mertens, A. L. P. Rotondaro, M. M. Heyns, T. Q. Hurd & Z. Hatcher, $H_2O_2$ Decomposition and Its Impact on Silicon Surface Roughening and Gate Oxide Integrity., Jpn. J. Appl. Phys., 34, 727-731 (1995). https://doi.org/10.1143/JJAP.34.727
  12. Mauldin, R.L., Kosciucha, E., Henrya, B., Eiselea, F.L., & Shettera, R., Measurements of OH, $HO_2\, + RO_2,\, H_2SO_4$, and MSA at the south pole during ISCA 2000., Atmos. Environ., 38, 5423-5437 (2004). https://doi.org/10.1016/j.atmosenv.2004.06.031
  13. Thomas, D., & Vanderschuren, J., Modeling of $NO_X$ Absorption into Nitric Acid Solutions Containing Hydrogen Peroxide., Ind. Eng. Chem. Res., 36, 3315-3322 (1997). https://doi.org/10.1021/ie960436g
  14. Park, S.Y., Deshwal, B.R., & Moon, S. H., $NO_X$ Removal from The Flue Gas of Oil-Fired Boiler using a Multistage Plasma-Catalyst Hybrid System., Fuel Process. Technol., 89, 540-548 (2008). https://doi.org/10.1016/j.fuproc.2007.10.002

피인용 문헌

  1. K-Mn/Fe2O3 촉매 상 H2O2 분해에 의한 건식산화제 생성 및 모사 배가스 유량에 따른 NO 산화공정 vol.34, pp.2, 2016, https://doi.org/10.12925/jkocs.2017.34.2.367