DOI QR코드

DOI QR Code

A Comparison of Natural (D-α-tocopherol) and Synthetic (DL-α-tocopherol Acetate) Vitamin E Supplementation on the Growth Performance, Meat Quality and Oxidative Status of Broilers

  • Cheng, K. (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Niu, Y. (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Zheng, X.C. (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Zhang, H. (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Chen, Y.P. (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Zhang, M. (Jiangsu Wilmar Spring Fruit Nutrition Products Co., Ltd.) ;
  • Huang, X.X. (Jiangsu Wilmar Spring Fruit Nutrition Products Co., Ltd.) ;
  • Zhang, L.L. (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Zhou, Y.M. (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Wang, T. (College of Animal Science and Technology, Nanjing Agricultural University)
  • Received : 2015.10.01
  • Accepted : 2016.01.15
  • Published : 2016.05.01

Abstract

The present study was conducted to compare the supplementation of natural (D-${\alpha}$-tocopherol) and synthetic (DL-${\alpha}$-tocopherol acetate) vitamin E on the growth performance, meat quality, muscular antioxidant capacity and genes expression related to oxidative status of broilers. A total of 144 1 day-old Arbor Acres broiler chicks were randomly allocated into 3 groups with 6 replicates of 8 birds each. Birds were given a basal diet (control group), and basal diet supplemented with either 20 IU D-${\alpha}$-tocopherol or DL-${\alpha}$-tocopherol acetate for 42 days, respectively. The results indicated that treatments did not alter growth performance of broilers (p>0.05). Compared with the control group, concentration of ${\alpha}$-tocopherol in the breast muscle was increased by the supplementation of vitamin E (p<0.05). In the thigh, ${\alpha}$-tocopherol content was also enhanced by vitamin E inclusion, and this effect was more pronounced in the natural vitamin E group (p<0.05). Vitamin E supplementation increased the redness of breast (p<0.05). In the contrast, the inclusion of synthetic vitamin E decreased lightness of thigh (p<0.05). Dietary vitamin E inclusion reduced drip loss at 24 h of thigh muscle (p<0.05), and this effect was maintained for drip loss at 48 h in the natural vitamin E group (p<0.05). Broilers given diet supplemented with vitamin E showed decreased malondialdehyde (MDA) content in the breast (p<0.05). Additionally, natural rather than synthetic vitamin E reduced MDA accumulation in the thigh (p<0.05). Neither natural nor synthetic vitamin E supplementation altered muscular mRNA abundance of genes related to oxidative stress (p>0.05). It was concluded that vitamin E supplementation, especially the natural vitamin E, can enhance the retention of muscular ${\alpha}$-tocopherol, improve meat quality and muscular antioxidant capacity of broilers.

Keywords

References

  1. Amazan, D., G. Cordero, C. J. Lopez-Bote, C. Lauridsen, and A. I. Rey. 2014. Effects of oral micellized natural vitamin E (d-${\alpha}$-tocopherol) vs. synthetic vitamin E (dl-${\alpha}$-tocopherol) in feed on ${\alpha}$-tocopherol levels, stereoisomer distribution, oxidative stress and the immune response in piglets. Animal 8:410-419. https://doi.org/10.1017/S1751731113002401
  2. Asghar, A., J. I. Gray, A. M. Booren, E. A. Gomaa, M. M. Abouzied, E. R. Miller, and D. J. Buckley. 1991. Effects of supranutritional dietary vitamin E levels on subcellular deposition of ${\alpha}$-tocopherol in the muscle and on pork quality. J. Sci. Food Agric. 57:31-41. https://doi.org/10.1002/jsfa.2740570104
  3. Bartov, I. and M. Frigg. 1992. Effect of high concentrations of dietary vitamin E during various age periods on performance, plasma vitamin E and meat stability of broiler chicks at 7 weeks of age. Br. Poult. Sci. 33:393-402. https://doi.org/10.1080/00071669208417477
  4. Benzie, I. F. and J. J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal. Biochem. 239:70-76. https://doi.org/10.1006/abio.1996.0292
  5. Boler, D. D., S. R. Gabriel, H. Yang, R. Balsbaugh, D. C. Mahan, M. S. Brewer, F. K. McKeith, and J. Killefer. 2009. Effect of different dietary levels of natural-source vitamin E in growfinish pigs on pork quality and shelf life. Meat Sci. 83:723-730. https://doi.org/10.1016/j.meatsci.2009.08.012
  6. Brigelius-Flohe, R. and M. G. Traber. 1999. Vitamin E: Function and metabolism. FASEB J. 13:1145-1155. https://doi.org/10.1096/fasebj.13.10.1145
  7. Cho, H. Y., A. E. Jedlicka, S. P. Reddy, T. W. Kensler, M. Yamamoto, L. Y. Zhang, and S. R. Kleeberger. 2002. Role of NRF2 in protection against hyperoxic lung injury in mice. Am. J. Respir. Cell Mol. Biol. 26:175-182. https://doi.org/10.1165/ajrcmb.26.2.4501
  8. Guo, Y., Q. Tang, J. Yuan, and Z. Jiang. 2001. Effects of supplementation with vitamin E on the performance and the tissue peroxidation of broiler chicks and the stability of thigh meat against oxidative deterioration. Anim. Feed Sci. Technol. 89:165-173. https://doi.org/10.1016/S0377-8401(00)00228-5
  9. Hafeman, D. G., R. A. Sunde, and W. G. Hoekstra. 1974. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J. Nutr. 104:580-587. https://doi.org/10.1093/jn/104.5.580
  10. Halliwell, B. and J. M. C. Gutteridge. 2000. Free Radicals in Biology and Medicine. 3rd ed. Oxford Univ. Press, New York, NY, USA.
  11. Jensen, C., C. Lauridsen, and G. Bertelsen. 1998. Dietary vitamin E: Quality and storage stability of pork and poultry. Trends Food Sci. Technol. 9:62-72. https://doi.org/10.1016/S0924-2244(98)00004-1
  12. Kaiser, M. G., S. S. Block, C. Ciraci, W. Fang, M. Sifri, and S. J. Lamont. 2012. Effects of dietary vitamin E type and level on lipopolysaccharide-induced cytokine mRNA expression in broiler chicks. Poult. Sci. 91:1893-1898. https://doi.org/10.3382/ps.2011-02116
  13. Kim, J. C., C. G. Jose, M. Trezona, K. L. Moore, J. R. Pluske, and B. P. Mullan. 2015. Supra-nutritional vitamin E supplementation for 28 days before slaughter maximises muscle vitamin E concentration in finisher pigs. Meat Sci. 110:270-277. https://doi.org/10.1016/j.meatsci.2015.08.007
  14. Lauridsen, C., H. Engel, S. K. Jensen, A. M. Craig, and M. G. Traber. 2002. Lactating sows and suckling piglets preferentially incorporate RRR-over all-rac-${\alpha}$-tocopherol into milk, plasma and tissues. J. Nutr. 132:1258-1264. https://doi.org/10.1093/jn/132.6.1258
  15. Li, W. J., G. P. Zhao, J. L. Chen, M. Q. Zheng, and J. Wen. 2009. Influence of dietary vitamin E supplementation on meat quality traits and gene expression related to lipid metabolism in the Beijing-you chicken. Br. Poult. Sci. 50:188-198. https://doi.org/10.1080/00071660902755409
  16. Li, Y. J., L. Y. Li, J. L. Li, L. Zhang, F. Gao, and G. H. Zhou. 2015. Effects of dietary supplementation with ferulic acid or vitamin E individually or in combination on meat quality and antioxidant capacity of finishing pigs. Asian Australas. J. Anim. Sci. 28:374-381.
  17. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}C}_T$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  18. McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, C. A. Morgan, L. A. SinclaiL, and R. G. Wilkinson. 2011. Animal Nutrition, 7th ed. Pearson, Harlow, England.
  19. Morrissey, P. A., D. J. Buckley, P. J. Sheehy, and F. J. Monahan. 1994. Vitamin E and meat quality. Proc. Nutr. Soc. 53:289-295. https://doi.org/10.1079/PNS19940034
  20. Nam, K. T., H. A. Lee, B. S. Min, and C. W. Kang. 1997. Influence of dietary supplementation with linseed and vitamin E on fatty acids, ${\alpha}$-tocopherol and lipid peroxidation in muscles of broiler chicks. Anim. Feed Sci. Technol. 66:149-158. https://doi.org/10.1016/S0377-8401(96)01108-X
  21. NRC. 1994. Nutrient Requirements of Poultry. 9th rev. ed. National Academy Press, Washington, DC, USA.
  22. O'neill, L. M., K. Galvin, P. A. Morrissey, and D. J. Buckley. 1998. Comparison of effects of dietary olive oil, tallow and vitamin E on the quality of broiler meat and meat products. Br. Poult. Sci. 39:365-371. https://doi.org/10.1080/00071669888917
  23. Oyanagui, Y. 1984. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal. Biochem. 142:290-296. https://doi.org/10.1016/0003-2697(84)90467-6
  24. Placer, Z. A., L. L. Cushman, and B. C. Johnson. 1966. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem. 16:359-364. https://doi.org/10.1016/0003-2697(66)90167-9
  25. Renerre, M. 1990. Factors involved in the discoloration of beef meat. Int. J. Food Sci. Technol. 25:613-630.
  26. Rey, A. I., J. Segura, A. Olivares, A. Cerisuelo, C. Pineiro, and C. J. Lopez-Bote. 2015. Effect of micellized natural (D-${\alpha}$-tocopherol) vs. synthetic (DL-${\alpha}$-tocopheryl acetate) vitamin E supplementation given to turkeys on oxidative status and breast meat quality characteristics. Poult. Sci. 94:1259-1269. https://doi.org/10.3382/ps/pev091
  27. Reboul, E., M. Richelle, E. Perrot, C. Desmoulins-Malezet, V. Pirisi, and P. Borel. 2006. Bioaccessibility of carotenoids and vitamin E from their main dietary sources. J. Agric. Food Chem. 54:8749-8755. https://doi.org/10.1021/jf061818s
  28. Sahin, K., N. Sahin, and M. F. Gursu. 2002. Effects of vitamins E and A supplementation on lipid peroxidation and concentration of some mineral in broilers reared under heat stress ($32^{\circ}C$). Nutr. Res. 22:723-731. https://doi.org/10.1016/S0271-5317(02)00376-7
  29. Sheehy, P. J. A., P. A. Morrissey, and A. Flynn. 1991. Influence of dietary ${\alpha}$-tocopherol on tocopherol concentrations in chick tissues. Br. Poult. Sci. 32:391-397. https://doi.org/10.1080/00071669108417364
  30. Sherbeck, J. A., D. M. Wulf, J. B. Morgan, J. D. Tatum, G. C. Smith, and S. N. Williams. 1995. Dietary supplementation of vitamin E to feedlot cattle affects beef retail display properties. J. Food Sci. 60:250-252. https://doi.org/10.1111/j.1365-2621.1995.tb05648.x
  31. Voljc, M., T. Frankic, A. Levart, M. Nemec, and J. Salobir. 2011. Evaluation of different vitamin E recommendations and bioactivity of ${\alpha}$-tocopherol isomers in broiler nutrition by measuring oxidative stress in vivo and the oxidative stability of meat. Poult. Sci. 90:1478-1488. https://doi.org/10.3382/ps.2010-01223
  32. Yang, H., D. C. Mahan, D. A. Hill, T. E. Shipp, T. R. Radke, and M. J. Cecava. 2009. Effect of vitamin E source, natural versus synthetic, and quantity on serum and tissue ${\alpha}$-tocopherol concentrations in finishing swine. J. Anim. Sci. 87:4057-4063. https://doi.org/10.2527/jas.2008-1570
  33. Yang, Y. and D. J. McClements. 2013. Encapsulation of vitamin E in edible emulsions fabricated using a natural surfactant. Food Hydrocoll. 30:712-720. https://doi.org/10.1016/j.foodhyd.2012.09.003
  34. Zhang, H., Y. Chen, Y. Li, L. Yang, J. Wang, and T. Wang. 2014. Medium-chain TAG attenuate hepatic oxidative damage in intra-uterine growth-retarded weanling piglets by improving the metabolic efficiency of the glutathione redox cycle. Br. J. Nutr. 112:876-885. https://doi.org/10.1017/S000711451400155X
  35. Zhang, J., Z. Hu, C. Lu, K. Bai, L. Zhang, and T. Wang. 2015. Effect of various levels of dietary curcumin on meat quality and antioxidant profile of breast muscle in broilers. J. Agric. Food Chem. 63:3880-3886. https://doi.org/10.1021/jf505889b
  36. Zhang, X. H., X. Zhong, Y. M. Zhou, H. M. Du, and T. Wang. 2009. Effect of RRR-${\alpha}$-tocopherol succinate on the growth and immunity in broilers. Poult. Sci. 88:959-966. https://doi.org/10.3382/ps.2008-00512

Cited by

  1. Dietary oregano (Origanum vulgare L.) aqueous extract improves oxidative stability and consumer acceptance of meat enriched with CLA and n-3 PUFA in broilers. vol.97, pp.5, 2018, https://doi.org/10.3382/ps/pex452
  2. The therapeutic effects of resveratrol on hepatic steatosis in high-fat diet-induced obese mice by improving oxidative stress, inflammation and lipid-related gene transcriptional expression pp.1860-1499, 2019, https://doi.org/10.1007/s00795-019-00216-7
  3. Nanoemulsion ingredients and components vol.17, pp.2, 2016, https://doi.org/10.1007/s10311-018-00849-7
  4. Resveratrol Protects Against Renal Damage via Attenuation of Inflammation and Oxidative Stress in High-Fat-Diet-Induced Obese Mice vol.42, pp.3, 2016, https://doi.org/10.1007/s10753-018-0948-7
  5. Effects of Early Resveratrol Intervention on Skeletal Muscle Mitochondrial Function and Redox Status in Neonatal Piglets with or without Intrauterine Growth Retardation vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/4858975
  6. Antioxidant Activity of Encapsulated Extracts and Bioactives from Natural Sources vol.26, pp.31, 2016, https://doi.org/10.2174/1381612826666200707131500
  7. Alpha-tocopherol acetate and alpha lipoic acid may mitigate the development of wooden breast myopathy in broilers at an early age vol.62, pp.5, 2016, https://doi.org/10.1080/00071668.2021.1927985
  8. Effect of Dietary Curcumin Supplementation on Duck Growth Performance, Antioxidant Capacity and Breast Meat Quality vol.10, pp.12, 2021, https://doi.org/10.3390/foods10122981