DOI QR코드

DOI QR Code

A Systematic Analysis of Drosophila Regulatory Peptide Expression in Enteroendocrine Cells

  • Chen, Ji (Department of Biological Sciences, Sungkyunkwan University) ;
  • Kim, Seol-min (Department of Biological Sciences, Sungkyunkwan University) ;
  • Kwon, Jae Young (Department of Biological Sciences, Sungkyunkwan University)
  • Received : 2016.01.25
  • Accepted : 2016.02.18
  • Published : 2016.04.30

Abstract

The digestive system is gaining interest as a major regulator of various functions including immune defense, nutrient accumulation, and regulation of feeding behavior, aside from its conventional function as a digestive organ. The Drosophila midgut epithelium is completely renewed every 1-2 weeks due to differentiation of pluripotent intestinal stem cells in the midgut. Intestinal stem cells constantly divide and differentiate into enterocytes that secrete digestive enzymes and absorb nutrients, or enteroendocrine cells that secrete regulatory peptides. Regulatory peptides have important roles in development and metabolism, but study has mainly focused on expression and functions in the nervous system, and not much is known about the roles in endocrine functions of enteroendocrine cells. We systemically examined the expression of 45 regulatory peptide genes in the Drosophila midgut, and verified that at least 10 genes are expressed in the midgut enteroendocrine cells through RT-PCR, in situ hybridization, antisera, and 25 regulatory peptide-GAL transgenes. The Drosophila midgut is highly compartmentalized, and individual peptides in enteroendocrine cells were observed to express in specific regions of the midgut. We also confirmed that some peptides expressed in the same region of the midgut are expressed in mutually exclusive enteroendocrine cells. These results indicate that the midgut enteroendocrine cells are functionally differentiated into different subgroups. Through this study, we have established a basis to study regulatory peptide functions in enteroendocrine cells as well as the complex organization of enteroendocrine cells in the Drosophila midgut.

Keywords

References

  1. Beehler-Evans, R., and Micchelli, C.A. (2015). Generation of enteroendocrine cell diversity in midgut stem cell lineages. Development 142, 654-664. https://doi.org/10.1242/dev.114959
  2. Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., and Hafen, E. (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213-221. https://doi.org/10.1016/S0960-9822(01)00068-9
  3. Brown, M.R., Crim, J.W., Arata, R.C., Cai, H.N., Chun, C., and Shen, P. (1999). Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 20, 1035-1042. https://doi.org/10.1016/S0196-9781(99)00097-2
  4. Chen, Y., Veenstra, J.A., Davis, N.T., and Hagedorn, H.H. (1994). comparative study of leucokinin-immunoreactive neurons in insects. Cell Tissue Res. 276, 69-83. https://doi.org/10.1007/BF00354786
  5. Chen, J., Choi, M.S., Mizoguchi, A., Veenstra, J.A., Kang, K., Kim, Y.J., and Kwon, J.Y. (2015). Isoform-specific expression of the neuropeptide orcokinin in Drosophila melanogaster. Peptides 68, 50-57. https://doi.org/10.1016/j.peptides.2015.01.002
  6. Dubreuil, R.R. (2004). Copper cells and stomach acid secretion in the Drosophila midgut. Int. J. Biochem. Cell Biol. 36, 745-752.
  7. Engelstoft, M.S., Egerod, K.L., Lund, M.L., and Schwartz, T.W. (2013). Enteroendocrine cell types revisited. Curr. Opin. Pharmacol. 13, 912-921. https://doi.org/10.1016/j.coph.2013.09.018
  8. Hansen, K.K., Hauser, F., Williamson, M., Weber, S.B., and Grimmelikhuijzen, C.J. (2011). The Drosophila genes CG14593 and CG30106 code for G-protein-coupled receptors specifically activated by the neuropeptides CCHamide-1 and CCHamide-2. Biochem. Biophys. Res. Commun. 404, 184-189. https://doi.org/10.1016/j.bbrc.2010.11.089
  9. Hergarden, A.C., Tayler, T.D., and Anderson, D.J. (2012). Allatostatin- A neurons inhibit feeding behavior in adult Drosophila. Proc. Natl. Acad. Sc.i USA 109, 3967-3972. https://doi.org/10.1073/pnas.1200778109
  10. LaJeunesse, D.R., Johnson, B., Presnell, J.S., Catignas, K.K., and Zapotoczny, G. (2010). Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 expressing enteroendocrine cells. BMC Physiol. 10, 14. https://doi.org/10.1186/1472-6793-10-14
  11. Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461. https://doi.org/10.1016/S0896-6273(00)80701-1
  12. Lee, G., and Park, J.H. (2004). Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167, 311-323. https://doi.org/10.1534/genetics.167.1.311
  13. Lee, K.S., You, K.H., Choo, J.K., Han, Y.M., and Yu, K. (2004). Drosophila short neuropeptide F regulates food intake and body size. J. Biol. Chem. 279, 50781-50789. https://doi.org/10.1074/jbc.M407842200
  14. Lee, K.S., Kwon, O.Y., Lee, J.H., Kwon, K., Min, K.J., Jung, S.A., Kim, A.K., You, K.H., Tatar, M., and Yu, K. (2008). Drosophila short neuropeptide F signalling regulates growth by ERKmediated insulin signalling. Nat. Cell Biol. 10, 468-475. https://doi.org/10.1038/ncb1710
  15. Li, S., Torre-Muruzabal, T., Sogaard, K.C., Ren, G.R., Hauser, F., Engelsen, S.M., Podenphanth, M.D., Desjardins, A., and Grimmelikhuijzen, C.J. (2013). Expression patterns of the Drosophila neuropeptide CCHamide-2 and its receptor may suggest hormonal signaling from the gut to the brain. PLoS ONE 8, e76131. https://doi.org/10.1371/journal.pone.0076131
  16. Luan, H., Lemon, W.C., Peabody, N.C., Pohl, J.B., Zelensky, P.K., Wang, D., Nitabach, M.N., Holmes, T.C., and White, B.H. (2006). Functional dissection of a neuronal network required for cuticle tanning and wing expansion in Drosophila. J. Neurosci. 26, 573-584. https://doi.org/10.1523/JNEUROSCI.3916-05.2006
  17. Melcher, C., and Pankratz, M.J. (2005). Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLoS Biol. 3, e305. https://doi.org/10.1371/journal.pbio.0030305
  18. Micchelli, C.A., and Perrimon, N. (2006). Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439, 475-479. https://doi.org/10.1038/nature04371
  19. Min, S., Chae, B., Jang, Y.H., Choi, S., Lee, S., Jeong, Y.T., Jones, W.D., Moon, S.J., Kim, Y.J., and Chung, J. (2016). Identification of a peptidergic pathway critical to satiety responses in Drosophila. Curr. Biol., in press.
  20. Nassel, D.R., and Winther, A.M. (2010). Drosophila neuropeptides in regulation of physiology and behavior. Prog. Neurobiol. 92, 42-104. https://doi.org/10.1016/j.pneurobio.2010.04.010
  21. Ohlstein, B., and Spradling, A. (2006). The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439, 470-474. https://doi.org/10.1038/nature04333
  22. Park, J.H., and Kwon, J.Y. (2011). A systematic analysis of Drosophila gustatory receptor gene expression in abdominal neurons which project to the central nervous system. Mol. Cells 32, 375-381. https://doi.org/10.1007/s10059-011-0128-1
  23. Park, S., Sonn J.Y., Oh Y., Lim C., and Choe J. (2014). SIFamide and SIFamide receptor defines a novel neuropeptide signaling to promote sleep in Drosophila. Mol. Cells 37, 295-301. https://doi.org/10.14348/molcells.2014.2371
  24. Park, J.H., Chen, J., Jang, S., Ahn, T.J., Kang, K., Choi, M.S., and Kwon, J.Y. (2016). A subset of enteroendocrine cells is activated by amino acids in the Drosophila midgut. FEBS Lett., in press.
  25. Price, M.D., Merte, J., Nichols, R., Koladich, P.M., Tobe, S.S., and Bendena, W.G. (2002). Drosophila melanogaster flatline encodes a myotropin orthologue to Manduca sexta allatostatin. Peptides 23, 787-794. https://doi.org/10.1016/S0196-9781(01)00649-0
  26. Psichas, A., Reimann, F., and Gribble, F.M. (2015). Gut chemosensing mechanisms. J. Clin. Invest. 125, 908-917. https://doi.org/10.1172/JCI76309
  27. Reiher, W., Shirras, C., Kahnt, J., Baumeister, S., Isaac, R.E., and Wegener, C. (2011). Peptidomics and peptide hormone processing in the Drosophila midgut. J. Proteome Res. 10, 1881-1892. https://doi.org/10.1021/pr101116g
  28. Scopelliti, A., Cordero, J.B., Diao, F., Strathdee, K., White, B.H., Sansom, O.J., and Vidal, M. (2014). Local control of intestinal stem cell homeostasis by enteroendocrine cells in the adult Drosophila midgut. Curr. Biol. 24, 1199-1211. https://doi.org/10.1016/j.cub.2014.04.007
  29. Siviter, R.J., Coast, G.M., Winther, A.M., Nachman, R.J., Taylor, C.A., Shirras, A.D., Coates, D., Isaac, R.E., and Nassel, D.R. (2000). Expression and functional characterization of a Drosophila neuropeptide precursor with homology to mammalian preprotachykinin A. J. Biol. Chem. 275, 23273-23280. https://doi.org/10.1074/jbc.M002875200
  30. Song, W., Veenstra, J.A., and Perrimon, N. (2014). Control of lipid metabolism by tachykinin in Drosophila. Cell Rep. 9, 40-47. https://doi.org/10.1016/j.celrep.2014.08.060
  31. Vanderveken, M., and O'Donnell, M.J. (2014). Effects of diuretic hormone 31, drosokinin, and allatostatin A on transepithelial K(+) transport and contraction frequency in the midgut and hindgut of larval Drosophila melanogaster. Arch. Insect Biochem. Physiol. 85, 76-93. https://doi.org/10.1002/arch.21144
  32. Veenstra, J.A. (2009). Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot. Cell Tissue Res. 336, 309-323. https://doi.org/10.1007/s00441-009-0769-y
  33. Veenstra, J.A., and Ida, T. (2014). More Drosophila enteroendocrine peptides: Orcokinin B and the CCHamides 1 and 2. Cell Tissue Res. 357, 607-621. https://doi.org/10.1007/s00441-014-1880-2
  34. Veenstra, J.A., Agricola, H.J., and Sellami, A. (2008). Regulatory peptides in fruit fly midgut. Cell Tissue Res. 334, 499-516. https://doi.org/10.1007/s00441-008-0708-3
  35. Wang, C., Guo, X., Dou, K., Chen, H., and Xi, R. (2015). Ttk69 acts as a master repressor of enteroendocrine cell specification in Drosophila intestinal stem cell lineages. Development 142, 3321-3331. https://doi.org/10.1242/dev.123208
  36. Wegener, C., and Veenstra, J.A. (2015). Chemical identity, function and regulation of enteroendocrine peptides in insects. Curr. Opin. Insect Sci. 11, 8-13. https://doi.org/10.1016/j.cois.2015.07.003
  37. Williamson, M., Lenz, C., Winther, A.M., Nassel, D.R., and Grimmelikhuijzen, C.J. (2001). Molecular cloning, genomic organization, and expression of a B-type (cricket-type) allatostatin preprohormone from Drosophila melanogaster. Biochem. Biophys. Res. Commun. 281, 544-550. https://doi.org/10.1006/bbrc.2001.4402
  38. Wu, Q., Wen, T., Lee, G., Park, J.H., Cai, H.N., and Shen, P. (2003). Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39, 147-161. https://doi.org/10.1016/S0896-6273(03)00396-9
  39. Zeng, X., and Hou, S.X. (2015). Enteroendocrine cells are generated from stem cells through a distinct progenitor in the adult Drosophila posterior midgut. Development 142, 644-653. https://doi.org/10.1242/dev.113357

Cited by

  1. Atg16 promotes enteroendocrine cell differentiation via regulation of intestinal Slit/Robo signaling vol.144, pp.21, 2017, https://doi.org/10.1242/dev.147033
  2. Substrates for Neuronal Cotransmission With Neuropeptides and Small Molecule Neurotransmitters in Drosophila vol.12, pp.1662-5102, 2018, https://doi.org/10.3389/fncel.2018.00083
  3. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research vol.66, pp.15, 2016, https://doi.org/10.1021/acs.jafc.7b05900
  4. A Neuronal Relay Mediates a Nutrient Responsive Gut/Fat Body Axis Regulating Energy Homeostasis in Adult Drosophila vol.29, pp.2, 2016, https://doi.org/10.1016/j.cmet.2018.09.021
  5. The Cellular Diversity and Transcription Factor Code of Drosophila Enteroendocrine Cells vol.29, pp.12, 2016, https://doi.org/10.1016/j.celrep.2019.11.048
  6. An in vivo RNAi screen uncovers the role of AdoR signaling and adenosine deaminase in controlling intestinal stem cell activity vol.117, pp.1, 2020, https://doi.org/10.1073/pnas.1900103117
  7. Physiological and Pathological Regulation of Peripheral Metabolism by Gut-Peptide Hormones in Drosophila vol.11, pp.None, 2016, https://doi.org/10.3389/fphys.2020.577717
  8. A cell atlas of the adult Drosophila midgut vol.117, pp.3, 2020, https://doi.org/10.1073/pnas.1916820117
  9. Microbial Control of Intestinal Homeostasis via Enteroendocrine Cell Innate Immune Signaling vol.28, pp.2, 2020, https://doi.org/10.1016/j.tim.2019.09.005
  10. Tissue Adaptation to Environmental Cues by Symmetric and Asymmetric Division Modes of Intestinal Stem Cells vol.21, pp.17, 2016, https://doi.org/10.3390/ijms21176362
  11. Metabolism and growth adaptation to environmental conditions in Drosophila vol.77, pp.22, 2016, https://doi.org/10.1007/s00018-020-03547-2
  12. Hormonal axes in Drosophila: regulation of hormone release and multiplicity of actions vol.382, pp.2, 2016, https://doi.org/10.1007/s00441-020-03264-z
  13. Identification and characterization of GAL4 drivers that mark distinct cell types and regions in the Drosophila adult gut vol.35, pp.1, 2016, https://doi.org/10.1080/01677063.2020.1853722
  14. Leucokinins: Multifunctional Neuropeptides and Hormones in Insects and Other Invertebrates vol.22, pp.4, 2016, https://doi.org/10.3390/ijms22041531
  15. The chemical brain hypothesis for the origin of nervous systems vol.376, pp.1821, 2021, https://doi.org/10.1098/rstb.2019.0761
  16. Spatiotemporal organization of enteroendocrine peptide expression in Drosophila vol.35, pp.4, 2016, https://doi.org/10.1080/01677063.2021.1989425