Acknowledgement
Supported by : 남서울대학교
References
- Auciello, N. M., & Nole, G. (1998). Vibrations of a cantilever tapered beam with varying section properties and carrying a mass at the free end. Journal of Sound and Vibration, 214, 105-119. https://doi.org/10.1006/jsvi.1998.1538
- Chen, D. W., & Wu, J. S. (2002). The exact solutions for the natural frequencies and mode shapes of non-uniform beams with multiple spring-mass systems. Journal of Sound and Vibration, 255, 299-322. https://doi.org/10.1006/jsvi.2001.4156
- Chen, Y. Z. (2000). Target function method for evaluating natural vibration frequency of bending beam with adhesive mass. Communications in Numerical Methods in Engineering, 16, 343-355. https://doi.org/10.1002/(SICI)1099-0887(200005)16:5<343::AID-CNM340>3.0.CO;2-9
- Dilena, M., Dell’Oste, M. F., & Morassi, A. (2011). Detecting cracks in pipes filled with fluid from changes in natural frequencies. Mechanical Systems and Signal Processing, 25, 3186-3197. https://doi.org/10.1016/j.ymssp.2011.04.013
- Ece, M. C., Aydogdu, M., & Taskin, V. (2007). Vibration of a variable cross-section beam. Mechanics Research Communications, 34, 78-84. https://doi.org/10.1016/j.mechrescom.2006.06.005
- Gorman, D. J. (1975). Free Vibration Analysis of Beams and Shafts, John Wiley & Sons, 374-379.
- Huh, Y. C., Kim, J. K., & Park, S. H. (2007). A study about the damage model of a cantilever beam with open crack generated in whole breadth of the beam. Transactions of the Korean Society for Noise and Vibration Engineering, 11, 936-945.
- Lee, J. W., Kim, S. R., & Huh, Y. C. (2014). Pipe crack identification based on the energy method and committee of neural networks. International Journal of Steel Structures, 14, 345-354. https://doi.org/10.1007/s13296-014-2014-0
- Lee, J. W. (2015). Fault detection method of tapered cantilever pipe-type beam, Journal of the Architectural Institute of Korea. Structure & Construction Section, 31, 13-20.
- Murigendrappa, S. M., Maiti, S. K., & Srirangarajan, H. R. (2004). frequency-based experimental and theoretical identification of multiple cracks in straight pipes filled with fluid. NDT&E International, 37, 431-438. https://doi.org/10.1016/j.ndteint.2003.11.009
- Naniwadekar, M. R., Naik, S. S., & Maiti, S. K. (2008). On prediction of crack in different orientations in pipe using frequency based approach. Mechanical Systems and Signal Processing, 22, 693-708. https://doi.org/10.1016/j.ymssp.2007.09.007
- Rosa, M. A. D., Lippiello, M., Maurizi, M. J., & Martin, H. D. (2010). Free vibration of elastically restrained cantilever tapered beams with concentrated viscous damping and mass. Mechanics Research Communications, 37, 261-264. https://doi.org/10.1016/j.mechrescom.2009.11.006
- Wang, Y. M., Chen X. F., & Heb Z. J. (2011). Daubechies wavelet finite element method and genetic algorithm for detection of pipe crack. Nondestructive Testing and Evaluation, 26, 87-99. https://doi.org/10.1080/10589759.2010.521826
- Wu, J. S., & Chen, C. T. (2005). An exact solution for frequencies and mode shapes of an immersed elastically restrained wedge beam carrying an eccentric mass with mass moment of inertia. Journal of Sound and Vibration, 286, 549-568. https://doi.org/10.1016/j.jsv.2004.10.008
- Yang, X. F., Swamidas, A. S. J., & Seshadri, R. (2001). Crack Identification in Vibrating Beams Using the Energy Method. Journal of Sound and Vibration, 244, 339-357. https://doi.org/10.1006/jsvi.2000.3498
- Ye J., He Y., Chen X., Zhai, Z., Wang, Y., & He, Z. (2010). Pipe crack identification based on finite element method of second generation wavelets. Mechanical Systems and Signal Processing, 24, 379-393. https://doi.org/10.1016/j.ymssp.2009.08.001