DOI QR코드

DOI QR Code

Melanin: A Naturally Existing Multifunctional Material

자연계에 존재하는 다기능성 소재 : 멜라닌

  • Eom, Taesik (Department of Chemical Engineering, Inha University) ;
  • Woo, Kyungbae (Department of Chemical Engineering, Inha University) ;
  • Shim, Bong Sup (Department of Chemical Engineering, Inha University)
  • 엄태식 (인하대학교 화학공학과) ;
  • 우경배 (인하대학교 화학공학과) ;
  • 심봉섭 (인하대학교 화학공학과)
  • Received : 2016.03.22
  • Accepted : 2016.03.28
  • Published : 2016.04.10

Abstract

Melanin is a common name used for a certain type of natural dark pigments existing in living organisms, particularly in human hair, eyes, and skin. The unique free radical scavenging effect of melanine could help protecting cells and tissues from harmful UV light. While their exact molecular structures in nature are not still well defined, their multifunctional properties including electrical and ionic conductivities, antioxidation, wet adhesion, and metal ion chelation, are highlighted for the potential applications in bioorganic electronics including biomedical sensors and devices. In this mini-review, we will discuss sources, synthesis methods, structures and multifunctional properties of melanin materials in addition to current research directions on a wide range of applications.

사람의 머리카락, 눈, 피부 등에서 발견되는 멜라닌은 자연의 생물체에 존재하는 어두운 색소를 가르치는 통칭이다. 멜라닌은 자유 라디컬을 흡수해서 제거하는 특성을 가지고 있어, 해로운 UV 광선이 생체로 침투할 때, 세포 및 조직을 보호하는 역할을 한다. 또한, 전기적 전도성 및 이온 전도성을 가지고 있으며, 항산화성, 젖은 상태에서의 접착성, 금속이온 킬레이팅 등 다기능성으로 인해, 다양한 분야에서의 응용이 주목받고 있다. 자연계에 존재하는 생체 멜라닌의 구조를 정확하게 정의할 수는 없지만, 멜라닌의 응용 분야는 센서, 의료기기 등으로 확대되고 있다. 본 미니총설에서는 멜라닌의 원천과 합성, 구조와 특성, 그리고 다양한 분야로의 응용 가능성에 대해서 구체적으로 논의한다.

Keywords

References

  1. P. A. Riley, Melanin, Int. J. Biochem. Cell Biol., 29(11), 1235-1239 (1997). https://doi.org/10.1016/S1357-2725(97)00013-7
  2. M. d'Ischia, K. Wakamatsu, A. Napolitano, S. Briganti, J.-C. Garcia-Borron, D. Kovacs, P. Meredith, A. Pezzella, M. Picardo, T. Sarna, J. D. Simon, and S. Ito, Melanins and melanogenesis: Methods, standards, protocols, Pigment Cell Melanoma Res., 26(5), 616-633 (2013). https://doi.org/10.1111/pcmr.12121
  3. F. Solano, Melanins: Skin pigments and much more-types, structural models, biological functions, and formation routes, New J. Sci., 2014, 1-28 (2014).
  4. V. P. Grishchuk, S. A. Davidenko, I. D. Zholner, A. B. Verbitskii, M. V. Kurik, and Y. P. Piryatinskii, Optical absorption and luminescent properties of melanin films, Tech. Phys. Lett., 28(11), 896-898 (2002). https://doi.org/10.1134/1.1526875
  5. V. Capozzi, G. Perna, P. Carmone, A. Gallone, M. Lastella, E. Mezzenga, G. Quartucci, M. Ambrico, V. Augelli, P. F. Biagi, T. Ligonzo, A. Minafra, L. Schiavulli, M. Pallara, and R. Cicero, Optical and photoelectronic properties of melanin, Thin Solid Films, 511, 362-366 (2006).
  6. M. R. Powell and B. Rosenberg, The nature of the charge carriers in solvated biomacromolecules: DNA and water, Biopolymers, 9(11), 1403-1406 (1970). https://doi.org/10.1002/bip.1970.360091109
  7. J. E. McGinness, Mobility gaps: A mechanism for band gaps in melanins, Science, 177(4052), 896-897 (1972). https://doi.org/10.1126/science.177.4052.896
  8. J. McGinness, P. Corry, and P. Proctor, Amorphous semiconductor switching in melanins, Science, 183(4127), 853-855 (1974). https://doi.org/10.1126/science.183.4127.853
  9. P. B. Capelletti, P. R. Crippa, and N. Romeo, Electrical characteristics and electret behavior of melanin, ECS J. Solid State Sci. Technol., 126(7), 1207-1212 (1979).
  10. W. Osak, K. Tkacz, H. Czternastek, and J. Slawinski, I - V Characteristics and electrical conductivity of synthetic melanin, Biopolymers, 28(11), 1885-1890 (1989). https://doi.org/10.1002/bip.360281105
  11. T. Ligonzo, M. Ambrico, V. Augelli, G. Perna, L. Schiavulli, M. A. Tamma, P. F. Biagi, A. Minafra, and V. Capozzi, Electrical and optical properties of natural and synthetic melanin biopolymer, J. Non-Cryst. Solids, 355(22-23), 1221-1226 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.05.014
  12. C. J. Bettinger, P. P. Bruggeman, A. Misra, J. T. Borenstein, and R. Langer, Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering, Biomaterials, 30(17), 3050-3057 (2009). https://doi.org/10.1016/j.biomaterials.2009.02.018
  13. M. Rozanowska, T. Sarna, E. J. Land, and T. G. Truscott, Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals, Free Radic. Biol. Med., 26(5-6), 518-525 (1999). https://doi.org/10.1016/S0891-5849(98)00234-2
  14. C. C. Felix, J. S. Hyde, T. Sarna, and R. C. Sealy, Interactions of melanin with metal ions. Electron spin resonance evidence for chelate complexes of metal ions with free radicals, J. Am. Chem. Soc., 100(12), 3922-3926 (1978). https://doi.org/10.1021/ja00480a044
  15. M. d'Ischia, A. Napolitano, A. Pezzella, P. Meredith, and T. Sarna, Chemical and structural diversity in eumelanins: Unexplored bio-optoelectronic materials, Angew. Chem. Int. Ed., 48(22), 3914-3921 (2009). https://doi.org/10.1002/anie.200803786
  16. Y. Liu and J. D. Simon, The effect of preparation procedures on the morphology of melanin from the ink sac of Sepia officinalis, Pigment Cell Res., 16(1), 72-80 (2003). https://doi.org/10.1034/j.1600-0749.2003.00009.x
  17. M. d'Ischia, A. Napolitano, V. Ball, C.-T. Chen, and M. J. Buehler, Polydopamine and eumelanin: From etructure-property relationships to a unified tailoring strategy, Acc. Chem. Res., 47(12), 3541-3550 (2014). https://doi.org/10.1021/ar500273y
  18. J. P. Bothma, J. de Boor, U. Divakar, P. E. Schwenn, and P. Meredith, Device-quality electrically conducting melanin thin films, Adv. Mater., 20(18), 3539-3542 (2008). https://doi.org/10.1002/adma.200703141
  19. M. I. N. da Silva, S. N. Deziderio, J. C. Gonzalez, C. F. O. Graeff, and M. A. Cotta, Synthetic melanin thin films: Structural and electrical properties, J. Appl. Phys., 96(10), 5803-5807 (2004). https://doi.org/10.1063/1.1803629
  20. Y. Liu, K. Ai, and L. Lu, Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields, Chem. Rev., 114(9), 5057-5115 (2014). https://doi.org/10.1021/cr400407a
  21. I. G. Kim, H. J. Nam, H. J. Ahn, and D.-Y. Jung, Electrochemical growth of synthetic melanin thin films by constant potential methods, Electrochim. Acta, 56(7), 2954-2959 (2011). https://doi.org/10.1016/j.electacta.2010.12.095
  22. K. Kang, S. Lee, R. Kim, I. S. Choi, and Y. Nam, Electrochemically driven, electrode-addressable formation of functionalized polydopamine films for neural interfaces, Angew. Chem. Int. Ed., 51(52), 13101-13104 (2012). https://doi.org/10.1002/anie.201207129
  23. Y. J. Kim, W. Wu, S.-E. Chun, J. F. Whitacre, and C. J. Bettinger, Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices, Proc. Natl. Acad. Sci. USA, 110(52), 20912-20917 (2013). https://doi.org/10.1073/pnas.1314345110
  24. M. L. Wolbarsht, A. W. Walsh, and G. George, Melanin, a unique biological absorber, Appl. Opt., 20(13), 2184-2186 (1981). https://doi.org/10.1364/AO.20.002184
  25. M. A. Rosei, L. Mosca, and F. Galluzzi, Photoelectronic properties of synthetic melanins, Synth. Met., 76(1-3), 331-335 (1996). https://doi.org/10.1016/0379-6779(95)03483-Z
  26. A. B. Mostert, B. J. Powell, F. L. Pratt, G. R. Hanson, T. Sarna, I. R. Gentle, and P. Meredith, Role of semiconductivity and ion transport in the electrical conduction of melanin, Proc. Natl. Acad. Sci. USA, 109(23), 8943-8947 (2012). https://doi.org/10.1073/pnas.1119948109
  27. C.-T. Chen, V. Ball, J. J. de Almeida Gracio, M. K. Singh, V. Toniazzo, D. Ruch, and M. J. Buehler, Self-assembly of tetramers of 5,6-dihydroxyindole explains the primary physical properties of eumelanin: Experiment, simulation, and design, ACS Nano, 7(2), 1524-1532 (2013). https://doi.org/10.1021/nn305305d
  28. J. Wuensche, F. Cicoira, C. F. O. Graeff, and C. Santato, Eumelanin thin films: Solution-processing, growth, and charge transport properties, J. Mater. Chem. B, 1(31), 3836-3842 (2013). https://doi.org/10.1039/c3tb20630k
  29. D. Kai, M. P. Prabhakaran, G. Jin, and S. Ramakrishna, Biocompatibility evaluation of electrically conductive nanofibrous scaffolds for cardiac tissue engineering, J. Mater. Chem. B, 1(17), 2305-2314 (2013). https://doi.org/10.1039/c3tb00151b
  30. V. Gargiulo, M. Alfe, R. Di Capua, A. R. Togna, V. Cammisotto, S. Fiorito, A. Musto, A. Navarra, S. Parisi, and A. Pezzella, Supplementing pi-systems: eumelanin and graphene-like integration towards highly conductive materials for the mammalian cell culture bio-interface, J. Mater. Chem. B, 3(25), 5070-5079 (2015). https://doi.org/10.1039/C5TB00343A
  31. J. Borovansky, M. Elleder, Melanosome degradation: Fact or fiction, Pigment Cell Res., 16(3), 280-286 (2003). https://doi.org/10.1034/j.1600-0749.2003.00040.x
  32. D. J. Kim, K. Y. Ju, and J. K. Lee, The synthetic melanin nanoparticles having an excellent binding capacity of heavy metal ions, Bull. Korean Chem. Soc., 33(11), 3788-3792 (2012). https://doi.org/10.5012/bkcs.2012.33.11.3788
  33. D. Wang, C. Chen, X. Ke, N. Kang, Y. Shen, Y. Liu, X. Zhou, H. Wang, C. Chen, and L. Ren, Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine-melanin hybrid system, ACS Appl. Mater. Interfaces, 7(5), 3030-3040 (2015). https://doi.org/10.1021/am5086269
  34. K. Shanmuganathan, J. H. Cho, P. Iyer, S. Baranowitz, and C. J. Ellison, Thermooxidative stabilization of polymers using natural and synthetic melanins, Macromolecules, 44(24), 9499-9507 (2011). https://doi.org/10.1021/ma202170n
  35. M. Araujo, R. Viveiros, T. R. Correia, I. J. Correia, V. D. B. Bonifacio, T. Casimiro, and A. Aguiar-Ricardo, Natural melanin: A potential pH-responsive drug release device, Int. J. Pharm., 469(1), 140-145 (2014). https://doi.org/10.1016/j.ijpharm.2014.04.051
  36. M. P. da Silva, J. C. Fernandes, N. B. de Figueiredo, M. Congiu, M. Mulato, and C. F. de Oliveira Graeff, Melanin as an active layer in biosensors, AIP Adv., 4(3), 037120-1-8 (2014). https://doi.org/10.1063/1.4869638
  37. F. Bernsmann, B. Frisch, C. Ringwald, and V. Ball, Protein adsorption on dopamine-melanin films: Role of electrostatic interactions inferred from zeta-potential measurements versus chemisorption, J. Colloid Interface Sci., 344(1), 54-60 (2010). https://doi.org/10.1016/j.jcis.2009.12.052
  38. T.-F. Wu and J.-D. Hong, Synthesis of water-soluble dopamine-melanin for ultrasensitive and ultrafast humidity sensor, Sens. Actuators B Chem., 224, 178-184 (2016). https://doi.org/10.1016/j.snb.2015.10.015
  39. M. D. Rubianes, A. Sanchez Arribas, E. Bermejo, M. Chicharro, A. Zapardiel, and G. Rivas, Carbon nanotubes paste electrodes modified with a melanic polymer: Analytical applications for the sensitive and selective quantification of dopamine, Sens. Actuators B Chem., 144(1), 274-279 (2010). https://doi.org/10.1016/j.snb.2009.10.067
  40. Y. J. Kim, W. Wu, S.-E. Chun, J. F. Whitacre, and C. J. Bettinger, Catechol-mediated reversible binding of multivalent cations in eumelanin half-cells, Adv. Mater., 26(38), 6572-6579 (2014). https://doi.org/10.1002/adma.201402295
  41. W. Dong, Y. Wang, C. Huang, S. Xiang, P. Ma, Z. Ni, and M. Chen, Enhanced thermal stability of poly(vinyl alcohol) in presence of melanin, J. Therm. Anal. Calorim., 115(2), 1661-1668 (2014). https://doi.org/10.1007/s10973-013-3419-2
  42. M. Xiao, Y. Li, M. C. Allen, D. D. Deheyn, X. Yue, J. Zhao, N. C. Gianneschi, M. D. Shawkey, and A. Dhinojwala, Bio-inspired structural colors produced via self-assembly of synthetic melanin nanoparticles, ACS Nano, 9(5), 5454-5460 (2015). https://doi.org/10.1021/acsnano.5b01298
  43. T.-F. Wu and J.-D. Hong, Dopamine-melanin nanofilms for biomimetic structural coloration, Biomacromolecules, 16(2), 660-666 (2015). https://doi.org/10.1021/bm501773c

Cited by

  1. Eumelanin Graphene-Like Integration: The Impact on Physical Properties and Electrical Conductivity vol.7, pp.None, 2016, https://doi.org/10.3389/fchem.2019.00121
  2. Controlled drug release from PNIPAM-incorporated melanin nanovesicles by photo-stimulation vol.34, pp.11, 2019, https://doi.org/10.1080/10667857.2019.1611055
  3. Controlled release of doxorubicin from polyethylene glycol functionalized melanin nanoparticles for breast cancer therapy: Part I. Production and drug release performance of the melanin nanoparticles vol.570, pp.None, 2016, https://doi.org/10.1016/j.ijpharm.2019.118613