DOI QR코드

DOI QR Code

Evaluation on the Biodegradability of the MBT Wastewater

MBT 폐수의 생분해성 평가

  • Lim, Ji-Young (Dept. of Civil & Environmental Engineering, Incheon National University) ;
  • Park, Jung-hwan (Dept. of Chemical & Environmental Technology, Inha Technical College) ;
  • Kim, Jin-Han (Dept. of Civil & Environmental Engineering, Incheon National University)
  • 임지영 (인천대학교 건설환경공학과) ;
  • 박정환 (인하공업전문대학 화공환경과) ;
  • 김진한 (인천대학교 건설환경공학과)
  • Received : 2015.11.30
  • Accepted : 2016.03.03
  • Published : 2016.03.31

Abstract

The possibility of the biological treatment of MBT wastewater generated from the vulcanization accelerator manufacturing process was investigated. MBT wastewater is not biodegradable because it hinders the activity of microorganisms, and approximately 10% of the total COD can be removed after a 7 day acclimation period. The optimal conditions of the MBT wastewater for the chemical pre-treatment was pH of 3.5 and the Fenton oxidation with the addition of $Fe^{3+}$ to the wastewater after agitation for 2 hours. The Fenton-treated MBT wastewater showed approximately 20% removal of COD when treated with the activated sludge process for the mixed paper wastewater and Fenton treated wastewater.

본 연구는 가황촉진제 제조공정에서 발생되는 MBT 폐수의 생물학적 처리가능성을 평가하였다. MBT 폐수는 미생물 활동을 저하시키기 때문에 생물학적으로 처리가 불가능하였지만, 7일의 순응기간을 거쳐 약 10%의 COD가 제거되었다. MBT 폐수의 화학적 전처리를 위한 최적조건은 pH 3.5, 2시간동안 교반 후 $Fe^{3+}$를 주입하여 펜톤산화를 한 경우였다. 또한, 펜톤처리 된 MBT 폐수를 제지폐수와 혼합하여 활성슬러지공정에서 처리했을 경우 MBT 폐수의 COD가 약 20% 제거되었다.

Keywords

References

  1. J. E. Mark, B. Erman, R. F. Eirich. Science and technology of rubber. Elsevier, London, UK, 2005.
  2. S. M. Kim, K. J. Kim, "Thiazole type accelerator effects on silane/silica filled natural rubber compound upon vulcanization and mechanical properties," Polymer Korea, Vol. 36, No. 2, pp. 235-244, 2011. DOI: http://dx.doi.org/10.7317/pk.2012.36.2.235
  3. M. Friederichs, O. Franzle, A. Salski, “Fuzzy clustering of existing chemicals according to their ecotoxicological properties,” Ecological Modelling, Vol. 85, No. 1, pp. 27-40, 1996. DOI: http://dx.doi.org/10.1016/0304-3800(95)00009-7
  4. H. De Wever, H. Verachtert, "Biodegradation and toxicity of benzothiazoles," Water Research, Vol. 31, No. 11, pp. 2673-2684, 1997. DOI: http://dx.doi.org/10.1016/S0043-1354(97)00138-3
  5. P. Tolgyessy, M. Kollar, D. Vanco, M. Piatrik, “The radiation treatment of wastewater solutions containing 2-mercaptobenzothiazole and N-oxidiethylene-2-benzothiazolesulfenamide,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 107, No. 5, pp. 315-320, 1986. DOI: http://dx.doi.org/10.1007/BF02166625
  6. B. G. Brownlee, J. H. Carey, G. A. McInnis, I. T. Pellizzari, "Aquatic environmental chemistry of 20(thiocyanomethylthio)benzothiazole and related benzothiazoles" Environmental Toxicology and Chemistry, Vol. 11, No. 8, pp. 1153-1168, 1992. DOI: http://dx.doi.org/10.1002/etc.5620110812
  7. D. De Devos, H. De wever, H. Verachtert, "Parameters affecting the degradation of benzothiazoles and benzimidazoles in activated-sludge systems" Applied Microbiology and Biotechnology, Vol. 39, No. 4, pp. 622-626, 1993. DOI: http://dx.doi.org/10.1007/BF00205064
  8. V. I. Repkina, S. A. Dokudovskaya, R. A. Umrikhina, V. A. Samokhina, "Maximum permissible concentrations of benzothiazole and 2-mercaptobenzothiazole while drainage water biochemical treatment," Khimicheskaya Promyshlennost, Vol. 10, pp. 598-599, 1983.
  9. Q. Bao, L. Chen, J. Tian, J. Wang, "Degradation of 2-mercaptobenzothiazole in aqueous solution by gamma irradiation," Radiation Physics and Chemistry, Vol. 103, pp. 198-202, 2014. DOI: http://dx.doi.org/10.1016/j.radphyschem.2014.06.001
  10. G. Munz, D. De Angelis, R. Gori, G. Mori, M. Casarci, C. Lubello, “The role of tannins in conventional and membrane treatment of tannery wastewater,” Journal of Hazardous Materials, Vol. 164, No. 2-3, pp. 733-739, 2009. DOI: http://dx.doi.org/10.1016/j.jhazmat.2008.08.070