DOI QR코드

DOI QR Code

Development of a novel genetic assay for telomere recombination in Saccharomyces cerevisiae

효모에서 텔로미어 재조합을 관찰하기 위한 새로운 유전학적 연구방법의 개발

  • Kim, Min-Kyu (Department of Biological Sciences, College of Natural Science, Inha University) ;
  • Bae, Sung-Ho (Department of Biological Sciences, College of Natural Science, Inha University)
  • 김민규 (인하대학교 자연과학대학 생명과학과) ;
  • 배성호 (인하대학교 자연과학대학 생명과학과)
  • Received : 2015.12.23
  • Accepted : 2016.03.07
  • Published : 2016.03.31

Abstract

Stable maintenance of telomere is required for cell proliferation and survival. Although telomerase is the primary means for telomere maintenance, recombination is another important pathway to maintain telomeres. In this study, we developed a genetic assay for telomere recombination using the internal $TG_{1-3}$ repeats present in subtelomeric regions of yeast. The recombination frequencies were dependent on the presence of the internal $TG_{1-3}$ repeats. PCR amplification of the regions near URA3 and CAN1 markers using genomic DNA isolated from $FOA^rCan^r$ colonies indicated that each isolate had lost the chromosome end including the markers. In addition, the recombination frequencies increased with longer internal $TG_{1-3}$ repeats. Our results suggest that the $FOA^rCan^r$ colony formation is the consequence of recombination between the internal and terminal $TG_{1-3}$ repeats.

텔로미어를 안정적으로 유지하는 것은 세포의 증식과 생존에 필수적이다. 비록 텔로미어 유지에는 telomerase가 가장 중요한 수단이지만 재조합도 텔로미어 유지를 위한 또 다른 중요한 과정으로 작용한다. 본 연구에서는 효모의 텔로미어 내부에 존재하는 $TG_{1-3}$ 반복서열을 이용하여 텔로미어 재조합을 관찰할 수 있는 유전학적 방법을 개발하였다. 관찰된 재조합 빈도는 내부 $TG_{1-3}$ 반복서열의 존재 여부에 영향을 받았으며, 생성된 $FOA^rCan^r$ 콜로니로부터 추출한 유전체 DNA를 사용하여 URA3와 CAN1 marker 근처 부위를 PCR 증폭한 결과, 각 콜로니들은 marker를 포함한 염색체 말단 부위가 결손 된 것으로 나타났다. 뿐만 아니라, 더 긴 내부 $TG_{1-3}$ 반복서열을 사용하였을 때 재조합 빈도는 더 증가하였다. 이러한 결과는 $FOA^rCan^r$ 콜로니 형성이 내부와 말단의 $TG_{1-3}$ 반복서열 사이의 재조합에 기인한다는 것을 의미한다.

Keywords

References

  1. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., and Cullin, C. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329-3330. https://doi.org/10.1093/nar/21.14.3329
  2. Chen, C. and Kolodner, R.D. 1999. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat. Genet. 23, 81-85.
  3. Chris, K., Michaelis, S., and Mitchell, A. 1994. Methods in yeast genetics. pp. 207-217. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA.
  4. Doksani, Y. and de Lange, T. 2014. The role of double-strand break repair pathways at functional and dysfunctional telomeres. Cold Spring Harb. Perspect. Biol. 6, a016576. https://doi.org/10.1101/cshperspect.a016576
  5. Draskovic, I. and Londono-Vallejo, A. 2014. Telomere recombination and the ALT pathway: a therapeutic perspective for cancer. Curr. Pharm. Des. 20, 6466-6471. https://doi.org/10.2174/1381612820666140630085857
  6. Heyer, W.D. 2015. Regulation of recombination and genomic maintenance. Cold Spring Harb. Perspect. Biol. 7, a016501.
  7. Lustig, A.J. 2003. Clues to catastrophic telomere loss in mammals from yeast telomere rapid deletion. Nat. Rev. Genet. 4, 916-923. https://doi.org/10.1038/nrg1207
  8. Paques, F. and Haber, J.E. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349-404.
  9. Sikorski, R.S. and Hieter, P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19-27.
  10. Teng, S.C. and Zakian, V.A. 1999. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell Biol. 19, 8083-8093. https://doi.org/10.1128/MCB.19.12.8083
  11. Webb, C.J., Wu, Y., and Zakian, V.A. 2013. DNA repair at telomeres: keeping the ends intact. Cold Spring Harb. Perspect. Biol. 5, pii: a012666.
  12. Wellinger, R.J. and Zakian, V.A. 2012. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191, 1073-1105. https://doi.org/10.1534/genetics.111.137851