DOI QR코드

DOI QR Code

Construction of Pseudoalteromonas - Escherichia coli shuttle vector based on a small plasmid from the marine organism Pseudoalteromonas

극지해양 Pseudoalteromonas 유래의 소형 플라스미드에 기반한 Pseudoalteromonas - Escherichia coli 셔틀벡터 제작

  • Kim, Dockyu (Division of Life Sciences, Korea Polar Research Institute) ;
  • Park, Ha Ju (Division of Life Sciences, Korea Polar Research Institute) ;
  • Park, Hyun (Division of Life Sciences, Korea Polar Research Institute)
  • 김덕규 (극지연구소 극지생명과학연구부) ;
  • 박하주 (극지연구소 극지생명과학연구부) ;
  • 박현 (극지연구소 극지생명과학연구부)
  • Received : 2015.11.19
  • Accepted : 2016.01.12
  • Published : 2016.03.31

Abstract

A small plasmid (pDK4) from the Antarctic marine organism Pseudoalteromonas sp. PAMC 21150, was purified, sequenced and analyzed. pDK4 was determined to be 3,480 bp in length with a G+C content of 41.64% and contains three open reading frames encoding a replication initiation protein (RepA), a conjugative mobilization protein (Mob) and a hypothetical protein. PCR-amplified pDK4 was cloned in high-copy pUC19 to yield the fusion vector pDOC153. The chloramphenicol resistance gene was inserted into pDOC153 to give an ampicillin and chloramphenicol-resistant, Pseudoalteromonas - Escherichia coli shuttle vector (7,216 bp; pDOC155). The TonB-dependent receptor (chi22718_IV ) and exochitinase (chi22718_III ) genes from Arctic marine P. issachenkonii PAMC 22718 were cloned into pDOC155 to produce pDOC158 and pDOC165, respectively. Both vector derivatives were transferred into plasmid-free Pseudoalteromonas sp. PAMC 22137 by the triparental mating method. PCR experiments showed that the genes were stably maintained both in Pseudoalteromonas sp. PAMC 22137 and E. coli $DH5{\alpha}$ cells, indicating the potential use of pDOC155 as a new gene transfer system into marine Pseudoalteromonas spp.

남극 해양세균 Pseudoalteromonas sp. PAMC 21150에서 분리한 소형 플라스미드(small plasmid, pDK4)의 크기는 3,480bp이고 G+C 함량은 41.64%이며, 3개의 open reading frames(ORFs)을 포함하고 있다. 3개의 ORF는 replication initiation protein (RepA), conjugative mobilization protein (Mob), 그리고 기능이 밝혀지지 않은 단백질을 코팅하고 있다. PCR 반응으로 증폭한 pDK4를 Escherichia coli high-copy pUC19 클로닝 벡터에 삽입하여 fusion vector (pDOC153)를 제작하였고, pDOC 153에 chloramphenicol 저항성 유전자를 삽입하여 ampicillin/chloramphenicol 저항성 Pseudoalteromonas - Escherichia coli 셔틀 벡터(shuttle vector; 7,216 bp 크기; pDOC155)를 제작하였다. 북극 해양세균 P. issachenkonii PAMC 22718이 보유한 2개의 유전자(TonB-dependent receptor gene, chi22718_IV, and exochitinase gene, chi22718_III)를 pDOC155에 삽입하여 두 개의 pDOC155 변형체(pDOC158, pDOC165)를 제작하였다. pDOC158 혹은 pDOC165을 이용하여 triparental mating 방법에 의해 플리스미드 미보유 해양세균인 Pseudoalteromonas sp. PAMC 22137를 형질전환하였다. PCR을 이용한 유전자 증폭실험을 통해서, pDOC158와 pDOC165에 삽입된 유전자들은 Pseudoalteromonas sp. PAMC 22137와 E. coli $DH5{\alpha}$ 내에서 안정적으로 유지되는 것을 확인하였다. 위의 결과는 셔틀 벡터 pDOC155는 Pseudoalteromonas spp. 유래 유전자들을 다른 Pseudoalteromonas spp. 세포 안으로 전달할 수 있는 새로운 유전자 전달시스템으로 이용될 수 있음을 보여주었다.

Keywords

References

  1. Al Khudary, R., Stosser, N.I., Qoura, F., and Antranikian, G. 2008. Pseudoalteromonas arctica sp. nov., an aerobic, psychrotolerant, marine bacterium isolated from Spitzbergen. Int. J. Syst. Evol. Microbiol. 58, 2018-2024. https://doi.org/10.1099/ijs.0.64963-0
  2. Feller, G., d'Amico, D., and Gerday, C. 1999. Thermodynamic stability of a cold-active alpha-amylase from the Antarctic bacterium Alteromonas haloplanctis. Biochemistry 38, 4613-4619. https://doi.org/10.1021/bi982650+
  3. Kim, D., Park, H.J., Kim, I.C., and Yim, J.H. 2014. A new approach for discovering cold-active enzymes in a cell mixture of pure-cultured bacteria. Biotechnol. Lett. 36, 567-573. https://doi.org/10.1007/s10529-013-1384-2
  4. Mancuso Nichols, C.A., Garon, S., Bowman, J.P., Raguenes, G., and Guezennec, J. 2004. Production of exopolysaccharides by Antarctic marine bacterial isolates. J. Appl. Microbiol. 96, 1057-1066. https://doi.org/10.1111/j.1365-2672.2004.02216.x
  5. Marx, J.C., Collins, T., D'Amico, S., Feller, G., and Gerday, C. 2007. Cold-adapted enzymes from marine Antarctic microorganisms. Mar. Biotechnol. 9, 293-304. https://doi.org/10.1007/s10126-006-6103-8
  6. Medigue, C., Krin, E., Pascal, G., Barbe, V., Bernsel, A., Bertin, P.N., Cheung, F., Cruveiller, S., D'Amico, S., Duilio, A., et al. 2005. Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res. 15, 1325-1335. https://doi.org/10.1101/gr.4126905
  7. Wang, P., Yu, Z., Li, B., Cai, X., Zeng, Z., Chen, X., and Wang, X. 2015. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas. Microb. Cell Fact. 14, 11. https://doi.org/10.1186/s12934-015-0194-8
  8. Wietz, M., Gram, L., Jorgensen, B., and Schramm, A. 2010. Latitudinal patterns in the abundance of major marine bacterioplankton groups. Aquat. Microb. Ecol. 61, 179-189. https://doi.org/10.3354/ame01443
  9. Yu, Z.C., Zhao, D.L., Ran, L.Y., Mi, Z.H., Wu, Z.Y., Pang, X., Zhang, X.Y., Su, H.N., Shi, M., Song, X.Y., et al. 2014. Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913. Microb. Cell Fact. 13, 13. https://doi.org/10.1186/1475-2859-13-13
  10. Zhao, D.L., Yu, Z.C., Li, P.Y., Wu, Z.Y., Chen, X.L., Shi, M., Yu, Y., Chen, B., Zhou, B.C., and Zhang, Y.Z. 2011. Characterization of a cryptic plasmid pSM429 and its application for heterologous expression in psychrophilic Pseudoalteromonas. Microb. Cell Fact. 10, 30. https://doi.org/10.1186/1475-2859-10-30