References
- D. A. Torrey, “Variable-reluctance generators in wind-energy systems,” in Proc. IEEE PESC’93, 1993, pp. 561-567.
- R. Cardenas, W. F. Ray, and G. M. Asher, “Switched reluctance generators for wind energy applications,” in Proc. IEEE PESC’95, 1995, pp. 559-564.
- K. Park and Z. Chen, “Self-tuning fuzzy logic control of a switched reluctance generator for wind energy applications,” in Proc. IEEE 3rd Int. Symp. Power Electron. Distrib. Gener. Syst., 2012, pp. 357-363.
- R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher, and P. Wheeler, “Control of a switched reluctance generator for variable-speed wind energy applications,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 781-791, Dec. 2005. https://doi.org/10.1109/TEC.2005.853733
- E. Echenique, J. Dixon, R. Cardenas, and R. Pena, “Sensorless control for a switched reluctance wind generator, based on current slopes and neural networks,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 817-825, Mar. 2009. https://doi.org/10.1109/TIE.2008.2005940
- S. Mendez, A. Martinez, W. Millan, C. E. Montano, and F. Perez-Cebolla, “Design, Characterization, and Validation of a 1-kW AC Self-Excited Switched Reluctance Generator,” IEEE Trans. Ind. Electron., vol. 61, no. 2, pp. 846-855, Feb. 2014. https://doi.org/10.1109/TIE.2013.2254098
- D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 3-14, Feb. 2002. https://doi.org/10.1109/41.982243
- X. Liu, K. Park and Z. Chen, “A Novel Excitation Assistance Switched Reluctance Wind Power Generator,” IEEE Trans. on Magn., vol. 50, no. 11, pp. 1-4, Nov. 2014.
- H. Chen and S. Lu, “Fault diagnosis digital method for power transistors in power converters of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 749-763, 2013. https://doi.org/10.1109/TIE.2012.2207661
- S. Gopalakrishnan, A. M. Omekanda, and B. Lequesne, “Classification and Remediation of Electrical Faults in the Switched Reluctance Drive”, IEEE Trans. Ind. Appl., vol. 42, no. 2, 2006, pp.479-486. https://doi.org/10.1109/TIA.2006.870044
- B. Schinnerl and D. Gerling, “Analysis of winding failure of switched reluctance motors,” in Proc. IEEE IEMDC’09, 2009, pp. 738-743.
- J. F. Marques, J. O. Estima, N. S. Gameiro, and A. J. M. Cardoso, “A New Diagnostic Technique for Real-Time Diagnosis of Power Converter Faults in Switched Reluctance Motor Drives,” IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 1854-1860, May./Jun. 2014. https://doi.org/10.1109/TIA.2013.2279898
- H. Torkaman and E. Afjei, “Comprehensive detection of eccentricity fault in switched reluctance machines using high frequency pulse injection,” IEEE Trans. Power Electron., vol. 28, no. 3, pp.1382 -1390, 2013. https://doi.org/10.1109/TPEL.2012.2205947
- J. Cai, Z. Q. Deng, and R. G. Hu, “Position Signal Faults Diagnosis and Control for Switched Reluctance Motor,” IEEE Trans. Magn., vol. 50, no. 9, 2014.
- M. Ehsani and B. Fahimi, “Elimination of position sensors in switched reluctance motor drives: State of the art and future trends,” IEEE Trans. Ind. Eletron., vol. 49, no. 1, pp. 40-47, Feb. 2002. https://doi.org/10.1109/41.982246
- I. H. Al-Bahadly, “Examination of a sensorless rotor position measurement method for switched reluctance drive”, IEEE Trans. Ind. Eletron., vol. 55, no. 1, pp. 288-295, 2008. https://doi.org/10.1109/TIE.2007.909055
- L. Xu and C. Wang, “Accurate rotor position detection and sensorless control of SRM for super-high speed operation,” IEEE Trans. Power Electron., vol. 17, no. 5, pp. 757-763, 2002. https://doi.org/10.1109/TPEL.2002.802196
- J. P. Lyons, S. R. MacMinn, and M. A. Preston, “Flux-current methods for SRM rotor position estimation,” in Proc. Conf. Rec. IEEE-IAS Annu. Meeting, 1991, pp. 482-487.
- A. D. Cheok and N. Ertugrul, “High robustness and reliability of fuzzy logic based position estimation for sensorless switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 15, no. 2, pp. 319-334, 2000.
- A. D. Cheok and Z. F. Wang, “Fuzzy logic rotor position estimation based switched reluctance motor DSP drive with accuracy enhancement,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 908-921, 2005. https://doi.org/10.1109/TPEL.2005.850958
- N. Ertugrul and A. D. Cheok, “Indirect angle estimation in switched reluctance motor drive using fuzzy logic based motor model,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1029-1044, 2000. https://doi.org/10.1109/63.892817
- A. D. Cheok and N. Ertugrul, “Use of fuzzy logic for modeling, estimation, and prediction in switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1207-1224, 2000.
- A. D. Cheok and N. Ertugrul, “High robustness of an SR motor angle estimation algorithm using fuzzy predictive filters and heuristic knowledge-based rules,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 904-916, 2000.
- E. Mese and D. A. Torrey, “An approach for sensorless position estimation for switched reluctance motors using artificial neural networks,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 66-75, 2002. https://doi.org/10.1109/63.988671
- L. Henriques , L. Rolim , W. Suemitsu , J. Dente and P. Branco, “Development and experimental tests of a simple neuro-fuzzy learning sensorless approach for switched reluctance motors, ” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3330-3344, 2011. https://doi.org/10.1109/TPEL.2011.2129597
- S. Paramasivam, S. Vijayan, M. Vasudevan, R. Arumugam, and R. Krishnan, “Real-time verification of AI based rotor position estimation techniques for a 6/4 pole switched reluctance motor drive,” IEEE Trans. Magn., vol. 43, no. 7, pp. 3209-3221, 2007. https://doi.org/10.1109/TMAG.2006.888811
- C. A. Hudson, N. S. Lobo, and R. Krishnan, “Sensorless control of single switch-based switched reluctance motor drive using neural network,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 321-329, 2008. https://doi.org/10.1109/TIE.2007.903965
- C. Wang, X. Liu, and Z. Chen, “Rotor Position Estimation for Switched Reluctance Wind Generator Using Extreme Learning Machine,” Proc. of WEGAT 2014, 2014, pp. 1-8.
- R. Isermann, “Model-based fault-detection and diagnosis-Status and applications,” Annu. Rev. Control, vol. 29, no. 1, pp.71-85, 2005. https://doi.org/10.1016/j.arcontrol.2004.12.002
- G. Scelba, G. De Donato, F. Bonaccorso, G. Scarcella, F. Giulii Capponi, “Fault Tolerant Rotor Position and Velocity Estimation Using Binary Hall-Effect Sensors for Low Cost Vector Control Drives,” IEEE Trans. Ind. Appl., vol. 50, no. 5, pp. 3403-3413, Sept.-Oct. 2014. https://doi.org/10.1109/TIA.2014.2304616
- G. B. Huang, Q. Y. Zhu, and C. K. SiewK, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, nos. 1-3, pp. 489-501, Dec. 2006. https://doi.org/10.1016/j.neucom.2005.12.126
- N. Y. Liang, G. B. Huang, P. Saratchandran, and N. Sundararajan, “A fast and accurate online sequential learning algorithm for feedforward networks,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411-1423, Nov. 2006. https://doi.org/10.1109/TNN.2006.880583
- G. B. Huang, H. M. Zhou, X. J. Ding, and R. Zhang, “Extreme learning machine for regression and multiclass classification,” IEEE Trans. Syst., Man, Cybern., B, Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012. https://doi.org/10.1109/TSMCB.2011.2168604
- C. Wan, Z. Xu; P. Pinson, Z. Y. Dong, and K. Wong, “Probabilistic Forecasting of Wind Power Generation Using Extreme Learning Machine”, IEEE Trans. Power Syst., pp. 1033-1044, vol. 29, no. 3, May 2014. https://doi.org/10.1109/TPWRS.2013.2287871
- A. H. Nizar, Z. Y. Dong, and Y. Wang, “Power utility nontechnical loss analysis with extreme learning machine method,” IEEE Trans. Power Syst., vol. 23, no. 3, pp. 946-955, Aug. 2008. https://doi.org/10.1109/TPWRS.2008.926431
- F. Deng and Z. Chen, “Power Control of Permanent Magnet Generator Based Variable Speed Wind Turbines,” in Proc. ICEMS’09, 2009, pp. 1-6.