DOI QR코드

DOI QR Code

Characteristic as a Gene Delivery System of Water Soluble Chitosan Conjugated with Cationic Peptide

양이온 펩타이드가 컨쥬게이트된 수용성 키토산의 유전자 전달체로서의 특성

  • Kim, Young-Min (Department of Polymer Science and Engineering, College of Engineering, Sunchon National University) ;
  • Kim, Ji-Ho (Department of Polymer Science and Engineering, College of Engineering, Sunchon National University) ;
  • Park, Seong-Cheol (Department of Polymer Science and Engineering, College of Engineering, Sunchon National University) ;
  • Park, Yung-Hoon (Department of Polymer Science and Engineering, College of Engineering, Sunchon National University) ;
  • Jang, Mi-Kyeong (Department of Polymer Science and Engineering, College of Engineering, Sunchon National University)
  • 김영민 (순천대학교 공과대학 고분자공학과) ;
  • 김지호 (순천대학교 공과대학 고분자공학과) ;
  • 박성철 (순천대학교 공과대학 고분자공학과) ;
  • 박영훈 (순천대학교 공과대학 고분자공학과) ;
  • 장미경 (순천대학교 공과대학 고분자공학과)
  • Received : 2016.12.09
  • Accepted : 2016.12.27
  • Published : 2016.12.31

Abstract

Recently gene delivery has been designed newly using bioactive biomaterial and applied in the various field by many researchers. In this study, we proposed a new gene delivery system which has the capability of targeting effect in the specific tissue and remarkably enhanced transfection efficiency. We investigated $^1H-NMR$ spectroscopy, particle size analyzer and gel retardation to confirm the correct preparation of gene delivery. Also, we identified the hemo-compatibility of gene delivery by hemolysis assay, non-cytotoxicity by MTT test and transfection efficiency. The uptake mechanism of the gene carrier was confirmed using inhibitor agent such as sodium azide, indomethacin, quercetin, colchicine, and chloropromazine. As a results, it was identified that gene carrier prepared by in this study entered in the cell by the microtubule-dependent, energy-dependent and clathrin-mediated endocytosis pathway.

Keywords

References

  1. Kay, M. A. (2011) State-of-the-art gene-based therapies: The road ahead. Nat. Rev. Genet. 12: 316-328. https://doi.org/10.1038/nrg2971
  2. Niidome, T., M. Urakawa, H. Sato, Y. Takahara, T. Anai, T. Hatakayama, A. Wada, T. Hirayama, and H. Aoyagi (2000) Gene transfer into hepatoma cells mediated by galactose-modified alpha-helical peptides. Biomaterials 21: 1811-1819. https://doi.org/10.1016/S0142-9612(00)00076-4
  3. Nam, J. P. and J. W. Nah (2016) Target gene delivery from targeting ligand conjugated chitosan-PEI copolymer for cancer therapy. Carbohydr. Polym. 135: 153-161. https://doi.org/10.1016/j.carbpol.2015.08.053
  4. Gardlik, R., R. Palffy, J. Hodosy, J. Lukacs, J. Turna, and P. Celec (2005) Vectors and delivery systems in gene therapy. Med. Sci. Monit. 11: RA110-RA121.
  5. Guo, X. and L. Huang (2012) Recent advances in nonviral vectors for gene delivery. Acc. Chem. Res. 45: 971-979. https://doi.org/10.1021/ar200151m
  6. Kim, W. J. and S. W. Kim (2009) Efficient siRNA delivery with non-viral polymeric vehicles. Pharm. Res. 26: 657-666. https://doi.org/10.1007/s11095-008-9774-1
  7. Tanaka, K., T. Kanazawa, T. Ogawa, Y. Takashima, T. Fukuda, and H. Okada (2010) Disulfide crosslinked stearoyl carrier peptides containing arginine and histidine enhance siRNA uptake and gene silencing. Int. J. Pharm. 398: 219-224. https://doi.org/10.1016/j.ijpharm.2010.07.038
  8. Wang, X., Z. Tai, J. Tian, W. Zhang, C. Yao, L. Zhang, Y. Gao, Q. Zhu, J. Gao, and S. Gao (2015) Reducible chimeric polypeptide consisting of octa-D-arginine and tetra-L-histidine peptides as an efficient gene delivery vector. Int. J. Nanomed. 10: 4669-4690.
  9. Brus, C., H. Petersen, A. Aigner, F. Czubayko, and T. Kissel (2004) Physicochemical and biological characterization of polyethylenimine-graft-poly(ethylene glycol) block copolymers as a delivery system for oligonucleotides and ribozymes. Bioconjug. Chem. 15: 677-684. https://doi.org/10.1021/bc034160m
  10. Kamimura, K., T. Suda, G. Zhang, and D. Liu (2011) Advances in gene delivery systems. Pharmaceut. Med. 25: 293-306.
  11. Chang, C. W., D. Choi, W. J. Kim, J. W. Yockman, L. V. Christensen, Y. H. Kim, and S. W. Kim (2007) Non-ionic amphiphilic biodegradable PEG-PLGA-PEG copolymer enhances gene delivery efficiency in rat skeletal muscle. J. Control. Release 118: 245-253. https://doi.org/10.1016/j.jconrel.2006.11.025
  12. Choi, J. S., K. Nam, J. Y. Park, J. B. Kim, J. K. Lee, and J. S. Park (2004) Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J. Control Release 99: 445-456. https://doi.org/10.1016/j.jconrel.2004.07.027
  13. Nam, H. Y., K. Nam, H. J. Hahn, B. H. Kim, H. J. Lim, H. J. Kim, J. S. Choi, and J. S. Park (2009) Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity. Biomaterials 30: 665-673. https://doi.org/10.1016/j.biomaterials.2008.10.013
  14. Christensen, L. V., C. W. Chang, W. J. Kim, S. W. Kim, Z. Zhong, C. Lin, J. F. Engbersen, and J. Feijen (2006) Reducible poly(amido ethylenimine)s designed for triggered intracellular gene delivery. Bioconjug. Chem. 17: 1233-1240. https://doi.org/10.1021/bc0602026
  15. Kim, T. I., M. Ou, M. Lee, and S. W. Kim (2009) Arginine-grafted bioreducible poly(disulfide amine) for gene delivery systems. Biomaterials 30: 658-664. https://doi.org/10.1016/j.biomaterials.2008.10.009
  16. Ou, M., X. L. Wang, R. Xu, C. W. Chang, D. A. Bull, and S. W. Kim (2008) Novel biodegradable poly(disulfide amine)s for gene delivery with high efficiency and low cytotoxicity. Bioconjug. Chem. 19: 626-633. https://doi.org/10.1021/bc700397x
  17. Ou, M., R. Xu, S. H. Kim, D. A. Bull, and S. W. Kim (2009) A family of bioreducible poly(disulfide amine)s for gene delivery. Biomaterials 30: 5804-5814. https://doi.org/10.1016/j.biomaterials.2009.06.050
  18. Kim, S. H., J. H. Jeong, T. I. Kim, S. W. Kim, and D. A. Bull (2009) VEGF siRNA delivery system using arginine-grafted bioreducible poly(disulfide amine). Mol. Pharm. 6: 718-726. https://doi.org/10.1021/mp800161e
  19. Fischer, D., T. Bieber, Y. Li, H. P. Elsasser, and T. Kissel (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16: 1273-1279. https://doi.org/10.1023/A:1014861900478
  20. Lee, M. and S. W. Kim (2005) Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm. Res. 22: 1-10. https://doi.org/10.1007/s11095-004-9003-5
  21. Balicki, D., R. A. Reisfeld, U. Pertl, E. Beutler, and H. N. Lode (2000) Histone H2A-mediated transient cytokine gene delivery induces efficient antitumor responses in murine neuroblastoma. Proc. Natl. Acad. Sci. USA 97: 11500-11504. https://doi.org/10.1073/pnas.210382997
  22. Kaouass, M., R. Beaulieu, and D. Balicki (2006) Histonefection: Novel and potent non-viral gene delivery. J. Control Release 113: 245-254. https://doi.org/10.1016/j.jconrel.2006.04.013
  23. Kim, J. B., J. S. Choi, K. Nam, M. Lee, J. S. Park, and J. K. Lee (2006) Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J. Control Release 114: 110-117. https://doi.org/10.1016/j.jconrel.2006.05.011
  24. Wadhwa, M. S., W. T. Collard, R. C. Adami, D. L. McKenzie, and K. G. Rice (1997) Peptide-mediated gene delivery: Influence of peptide structure on gene expression. Bioconjug. Chem. 8: 81-88. https://doi.org/10.1021/bc960079q
  25. Futaki, S., T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, and Y. Sugiura (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276: 5836-5840. https://doi.org/10.1074/jbc.M007540200
  26. Kichler, A., A. J. Mason, and B. Bechinger (2006) Cationic amphipathic histidine-rich peptides for gene delivery. Biochim. Biophys. Acta 1758: 301-307. https://doi.org/10.1016/j.bbamem.2006.02.005
  27. Hyvonen, Z., A. Plotniece, I. Reine, B. Chekavichus, G. Duburs, and A. Urtti (2000) Novel cationic amphiphilic 1,4-dihydropyridine derivatives for DNA delivery. Biochim. Biophys. Acta 1509: 451-466. https://doi.org/10.1016/S0005-2736(00)00327-8
  28. Rejman, J., V. Oberle, I. S. Zuhorn, and D. Hoekstra (2004) Sizedependent internalization of particles via the pathways of clathrinand caveolae-mediated endocytosis. Biochem. J. 377: 159-169. https://doi.org/10.1042/bj20031253
  29. Schnitzer, J. E., P. Oh, E. Pinney, and J. Allard (1994) Filipin-sensitive caveolae-mediated transport in endothelium: Reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell. Biol. 127: 1217-1232. https://doi.org/10.1083/jcb.127.5.1217
  30. Wang, L. H., K. G. Rothberg, and R. G. Anderson (1993) Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell. Biol. 123: 1107-1117. https://doi.org/10.1083/jcb.123.5.1107
  31. Dangoria, N. S., W. C. Breau, H. A. Anderson, D. M. Cishek, and L. C. Norkin (1996) Extracellular simian virus 40 induces an ERK/MAP kinase-independent signalling pathway that activates primary response genes and promotes virus entry. J. Gen. Virol. 77: 2173-2182. https://doi.org/10.1099/0022-1317-77-9-2173
  32. Templeton, N. S., D. D. Lasic, P. M. Frederik, H. H. Strey, D. D. Roberts, and G. N. Pavlakis (1997) Improved DNA: Liposome complexes for increased systemic delivery and gene expression. Nat. Biotechnol. 15: 647-652. https://doi.org/10.1038/nbt0797-647
  33. Deshpande, D., P. Blezinger, R. Pillai, J. Duguid, B. Freimark, and A. Rolland (1998) Target specific optimization of cationic lipidbased systems for pulmonary gene therapy. Pharm. Res. 15: 1340-1347. https://doi.org/10.1023/A:1011933117509