References
- Kay, M. A. (2011) State-of-the-art gene-based therapies: The road ahead. Nat. Rev. Genet. 12: 316-328. https://doi.org/10.1038/nrg2971
- Niidome, T., M. Urakawa, H. Sato, Y. Takahara, T. Anai, T. Hatakayama, A. Wada, T. Hirayama, and H. Aoyagi (2000) Gene transfer into hepatoma cells mediated by galactose-modified alpha-helical peptides. Biomaterials 21: 1811-1819. https://doi.org/10.1016/S0142-9612(00)00076-4
- Nam, J. P. and J. W. Nah (2016) Target gene delivery from targeting ligand conjugated chitosan-PEI copolymer for cancer therapy. Carbohydr. Polym. 135: 153-161. https://doi.org/10.1016/j.carbpol.2015.08.053
- Gardlik, R., R. Palffy, J. Hodosy, J. Lukacs, J. Turna, and P. Celec (2005) Vectors and delivery systems in gene therapy. Med. Sci. Monit. 11: RA110-RA121.
- Guo, X. and L. Huang (2012) Recent advances in nonviral vectors for gene delivery. Acc. Chem. Res. 45: 971-979. https://doi.org/10.1021/ar200151m
- Kim, W. J. and S. W. Kim (2009) Efficient siRNA delivery with non-viral polymeric vehicles. Pharm. Res. 26: 657-666. https://doi.org/10.1007/s11095-008-9774-1
- Tanaka, K., T. Kanazawa, T. Ogawa, Y. Takashima, T. Fukuda, and H. Okada (2010) Disulfide crosslinked stearoyl carrier peptides containing arginine and histidine enhance siRNA uptake and gene silencing. Int. J. Pharm. 398: 219-224. https://doi.org/10.1016/j.ijpharm.2010.07.038
- Wang, X., Z. Tai, J. Tian, W. Zhang, C. Yao, L. Zhang, Y. Gao, Q. Zhu, J. Gao, and S. Gao (2015) Reducible chimeric polypeptide consisting of octa-D-arginine and tetra-L-histidine peptides as an efficient gene delivery vector. Int. J. Nanomed. 10: 4669-4690.
- Brus, C., H. Petersen, A. Aigner, F. Czubayko, and T. Kissel (2004) Physicochemical and biological characterization of polyethylenimine-graft-poly(ethylene glycol) block copolymers as a delivery system for oligonucleotides and ribozymes. Bioconjug. Chem. 15: 677-684. https://doi.org/10.1021/bc034160m
- Kamimura, K., T. Suda, G. Zhang, and D. Liu (2011) Advances in gene delivery systems. Pharmaceut. Med. 25: 293-306.
- Chang, C. W., D. Choi, W. J. Kim, J. W. Yockman, L. V. Christensen, Y. H. Kim, and S. W. Kim (2007) Non-ionic amphiphilic biodegradable PEG-PLGA-PEG copolymer enhances gene delivery efficiency in rat skeletal muscle. J. Control. Release 118: 245-253. https://doi.org/10.1016/j.jconrel.2006.11.025
- Choi, J. S., K. Nam, J. Y. Park, J. B. Kim, J. K. Lee, and J. S. Park (2004) Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J. Control Release 99: 445-456. https://doi.org/10.1016/j.jconrel.2004.07.027
- Nam, H. Y., K. Nam, H. J. Hahn, B. H. Kim, H. J. Lim, H. J. Kim, J. S. Choi, and J. S. Park (2009) Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity. Biomaterials 30: 665-673. https://doi.org/10.1016/j.biomaterials.2008.10.013
- Christensen, L. V., C. W. Chang, W. J. Kim, S. W. Kim, Z. Zhong, C. Lin, J. F. Engbersen, and J. Feijen (2006) Reducible poly(amido ethylenimine)s designed for triggered intracellular gene delivery. Bioconjug. Chem. 17: 1233-1240. https://doi.org/10.1021/bc0602026
- Kim, T. I., M. Ou, M. Lee, and S. W. Kim (2009) Arginine-grafted bioreducible poly(disulfide amine) for gene delivery systems. Biomaterials 30: 658-664. https://doi.org/10.1016/j.biomaterials.2008.10.009
- Ou, M., X. L. Wang, R. Xu, C. W. Chang, D. A. Bull, and S. W. Kim (2008) Novel biodegradable poly(disulfide amine)s for gene delivery with high efficiency and low cytotoxicity. Bioconjug. Chem. 19: 626-633. https://doi.org/10.1021/bc700397x
- Ou, M., R. Xu, S. H. Kim, D. A. Bull, and S. W. Kim (2009) A family of bioreducible poly(disulfide amine)s for gene delivery. Biomaterials 30: 5804-5814. https://doi.org/10.1016/j.biomaterials.2009.06.050
- Kim, S. H., J. H. Jeong, T. I. Kim, S. W. Kim, and D. A. Bull (2009) VEGF siRNA delivery system using arginine-grafted bioreducible poly(disulfide amine). Mol. Pharm. 6: 718-726. https://doi.org/10.1021/mp800161e
- Fischer, D., T. Bieber, Y. Li, H. P. Elsasser, and T. Kissel (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16: 1273-1279. https://doi.org/10.1023/A:1014861900478
- Lee, M. and S. W. Kim (2005) Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm. Res. 22: 1-10. https://doi.org/10.1007/s11095-004-9003-5
- Balicki, D., R. A. Reisfeld, U. Pertl, E. Beutler, and H. N. Lode (2000) Histone H2A-mediated transient cytokine gene delivery induces efficient antitumor responses in murine neuroblastoma. Proc. Natl. Acad. Sci. USA 97: 11500-11504. https://doi.org/10.1073/pnas.210382997
- Kaouass, M., R. Beaulieu, and D. Balicki (2006) Histonefection: Novel and potent non-viral gene delivery. J. Control Release 113: 245-254. https://doi.org/10.1016/j.jconrel.2006.04.013
- Kim, J. B., J. S. Choi, K. Nam, M. Lee, J. S. Park, and J. K. Lee (2006) Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J. Control Release 114: 110-117. https://doi.org/10.1016/j.jconrel.2006.05.011
- Wadhwa, M. S., W. T. Collard, R. C. Adami, D. L. McKenzie, and K. G. Rice (1997) Peptide-mediated gene delivery: Influence of peptide structure on gene expression. Bioconjug. Chem. 8: 81-88. https://doi.org/10.1021/bc960079q
- Futaki, S., T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, and Y. Sugiura (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276: 5836-5840. https://doi.org/10.1074/jbc.M007540200
- Kichler, A., A. J. Mason, and B. Bechinger (2006) Cationic amphipathic histidine-rich peptides for gene delivery. Biochim. Biophys. Acta 1758: 301-307. https://doi.org/10.1016/j.bbamem.2006.02.005
- Hyvonen, Z., A. Plotniece, I. Reine, B. Chekavichus, G. Duburs, and A. Urtti (2000) Novel cationic amphiphilic 1,4-dihydropyridine derivatives for DNA delivery. Biochim. Biophys. Acta 1509: 451-466. https://doi.org/10.1016/S0005-2736(00)00327-8
- Rejman, J., V. Oberle, I. S. Zuhorn, and D. Hoekstra (2004) Sizedependent internalization of particles via the pathways of clathrinand caveolae-mediated endocytosis. Biochem. J. 377: 159-169. https://doi.org/10.1042/bj20031253
- Schnitzer, J. E., P. Oh, E. Pinney, and J. Allard (1994) Filipin-sensitive caveolae-mediated transport in endothelium: Reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell. Biol. 127: 1217-1232. https://doi.org/10.1083/jcb.127.5.1217
- Wang, L. H., K. G. Rothberg, and R. G. Anderson (1993) Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell. Biol. 123: 1107-1117. https://doi.org/10.1083/jcb.123.5.1107
- Dangoria, N. S., W. C. Breau, H. A. Anderson, D. M. Cishek, and L. C. Norkin (1996) Extracellular simian virus 40 induces an ERK/MAP kinase-independent signalling pathway that activates primary response genes and promotes virus entry. J. Gen. Virol. 77: 2173-2182. https://doi.org/10.1099/0022-1317-77-9-2173
- Templeton, N. S., D. D. Lasic, P. M. Frederik, H. H. Strey, D. D. Roberts, and G. N. Pavlakis (1997) Improved DNA: Liposome complexes for increased systemic delivery and gene expression. Nat. Biotechnol. 15: 647-652. https://doi.org/10.1038/nbt0797-647
- Deshpande, D., P. Blezinger, R. Pillai, J. Duguid, B. Freimark, and A. Rolland (1998) Target specific optimization of cationic lipidbased systems for pulmonary gene therapy. Pharm. Res. 15: 1340-1347. https://doi.org/10.1023/A:1011933117509