References
- Cheng H, Cao X, Xian M, Fang L, Cai TB, Ji JJ, et al. 2005. Synthesis and enzyme-specific activation of carbohydrategeldanamycin conjugates with potent anticancer activity. J. Med. Chem. 48: 645-652. https://doi.org/10.1021/jm049693a
- DeBoer C, Meulman PA, Wnuk RJ, Peterson DH. 1970. Geldanamycin, a new antibiotic. J. Antibiot. (Tokyo) 23: 442-447. https://doi.org/10.7164/antibiotics.23.442
- Dhakal D, Le TT, Pandey RP, Jha AK, Gurung R, Parajuli P, et al. 2015. Enhanced production of nargenicin A1 and generation of novel glycoslated derivatives. Appl. Biochem. Biotechnol. 175: 2934-2949. https://doi.org/10.1007/s12010-014-1472-3
- Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS. 2015. A comprehensive review of glycosylated bacterial natural products. Chem. Soc. Rev. DOI: 10.1039/c4cs00426d.
- Fukuyo Y, Hunt CR, Horikoshi N. 2009. Geldanamycin and its anti-cancer activities. Cancer Lett. 290: 24-35. https://doi.org/10.1016/j.canlet.2009.07.010
- Hong YS, Lee D, Kim W, Jeong JK, Kim CG, Sohng JK, et al. 2004. Inactivation of the carbamoyltransferase gene refines post-polyketide synthase modification steps in the biosynthesis of the antitumor agent geldanamycin. J. Am. Chem. Soc. 126: 11142-11143. https://doi.org/10.1021/ja047769m
- Kim W, Lee D, Hong SS, Na Z, Shin JC, Roh SH, et al. 2009. Rational biosynthetic engineering for optimization of geldanamycin analogues. ChemBioChem 10: 1243-1251. https://doi.org/10.1002/cbic.200800763
- Kim W, Lee JS, Lee D, Cai XF, Shin JC, Lee K, et al. 2007. Mutasynthesis of geldanamycin by the disruption of gene producing starter unit: generation of structural diversity at the benzoquinone ring. ChemBioChem 8: 1491-1494. https://doi.org/10.1002/cbic.200700196
- Lee D, Lee K, Cai XF, Dat NT, Boovanahalli SK, Lee M, et al. 2006. Biosynthesis of the heat-shock protein 90 inhibitor geldanamycin: new insight into the formation of the benzoquinone moiety. ChemBioChem 7: 246-248. https://doi.org/10.1002/cbic.200500441
- Lee K, Ryu JS, Jin Y, Kim W, Kaur N, Chung SJ, et al. 2008. Synthesis and anticancer activity of geldanamycin derivatives derived from biosynthetically generated mebabolites. Org. Biomol. Chem. 6: 340-348. https://doi.org/10.1039/B713407J
- Pandey RP, Gurung RB, Parajuli PP, Koirala N, Tuoi LT, Sohng JK. 2014. Assessing acceptor substrate promiscuity of YjiC-mediated glycosylation toward flavonoids. Carbohydr. Res. 393: 26-31. https://doi.org/10.1016/j.carres.2014.03.011
- Pandey RP, Parajuli P, Shin JY, Lee J, Lee S, Hong YS, et al. 2014. Enzymatic biosynthesis of novel resveratrol glucoside and glycoside derivatives. Appl. Environ. Microbiol. 80: 7235-7243. https://doi.org/10.1128/AEM.02076-14
- Schulte TW, Neckers LM. 1998. The benzoquinone ansamycin 17-allylamino-17-demethoxy geldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother. Pharmacol. 42: 273-279. https://doi.org/10.1007/s002800050817
- Singh S, Phillips GJ, Thorson JS. 2012. The structural biology of enzymes involved in natural product glycosylation. Nat. Prod. Rep. 29: 1201-1237. https://doi.org/10.1039/c2np20039b
- Solárová Z, Mojžiš J, Solár P. 2015. Hsp90 inhibitor as a sensitizer of cancer cells to different therapies. Int. J. Oncol. 46: 907-926.
- Supko JG, Hickman RL, Grever MR, Malspeis L. 1995. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother. Pharmacol. 36: 305-315. https://doi.org/10.1007/BF00689048
- Whitesell L, Mimnaugh EG, Costa BD, Myers CE, Neckers LM. 1994. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl. Acad. Sci. USA 91: 8324-8328. https://doi.org/10.1073/pnas.91.18.8324
- Wu CZ, Jang JH, Woo MH, Ahn JS, Kim JS, Hong YS. 2012. Enzymatic glycosylation of non benzoquinone geldanamycin analogs via Bacillus UDP-glycosyltransferase. Appl. Environ. Microbiol. 78: 7680-7686. https://doi.org/10.1128/AEM.02004-12
- Yang L, Wang Z, Lei H, Chen R, Wang X, Peng Y, Dai J. 2014. Neuroprotective glucosides of magnolol and honokiol from microbial-specific glycosylation. Tetrahedron 70: 8244-8251. https://doi.org/10.1016/j.tet.2014.09.033
Cited by
- Fermentative Production of Phenolic Glucosides by Escherichia coli with an Engineered Glucosyltransferase from Rhodiola sachalinensis vol.65, pp.23, 2017, https://doi.org/10.1021/acs.jafc.7b00981
- Enzyme-Catalyzed Glycosylation of Curcumin and Its Analogues by Glycosyltransferases from Bacillus subtilis ATCC 6633 vol.9, pp.9, 2016, https://doi.org/10.3390/catal9090734