DOI QR코드

DOI QR Code

Automated Cable Route Design based Flexible Cable Fill Check of Raceway in Cable Spreading of Generating Station

발전소 케이블 포설에서 Raceway의 유연한 케이블 Fill 체크 기반 자동화된 케이블 라우팅 설계

  • Park, Ki-Hong (Divison of Convergence Computer & Media, Mokwon University) ;
  • Lee, Yang Sun (Divison of Convergence Computer & Media, Mokwon University)
  • Received : 2015.12.08
  • Accepted : 2016.01.12
  • Published : 2016.03.31

Abstract

In generating station, cable spreading design is a very important task, which is very much time consuming, due to the type of cable used in generating station is very diverse. The raceway means the cable line section from source equipment to destination, and consists of cable tray and conduit. The process of existing cable spreading design was written in by hand. Thereby, there are grossly inefficient gain such as cable omission and unfixed fill value by a personal and time investment. In this paper, we proposed and implemented the automated cable route design based flexible cable fill check in generating station, and proposed the automated cable route design can be calculated the cable fill with flexible changing of raceway. Some experimental result shows that implemented cable route design is well performed and conducted as the design specifications, and it will be able to reduce the cable spreading design time.

발전소 설비에서 케이블 포설을 위한 설계는 발전소 설비에 사용되어지는 케이블 유형의 다양한 형태로 인해 매우 많은 시간이 요구되고 매우 중요한 과제이다. 케이블 포설 설계 시 레이스웨이(Raceway)는 출발지(Source) 장비로부터 목적지(Destination) 장비까지의 케이블 트레이(Tray) 및 콘디트(Conduit)의 포설 구간을 의미한다. 기존의 케이블 포설 설계 과정은 모두 수기에 의해 작성되어 인적/시간적 투자손실이 크고, 케이블의 누락 및 케이블 오버필(Over Fill)과 같은 비효율적인 손실이 빈번히 발생한다. 따라서 본 논문에서는 효과적인 발전소 케이블 포설 설계를 위한 레이스웨이의 유연한 케이블 오버 필(Fill) 체크 기반의 자동화된 케이블 라우팅 경로 계산 알고리즘을 구현하였고, 제안한 자동화 케이블 라우팅 설계기법은 케이블 위치의 변화에도 유연한 레이스웨이 계산이 가능하다. 구현 결과, 케이블 라우팅 설계 프로그램은 발전소 케이블 포설 설계 사양을 준수하면서 케이블 라우팅 경로를 효과적으로 설정하고, 케이블 포설 설계 시간을 기존 대비 크게 단축하는 성능을 얻을 수 있었다.

Keywords

References

  1. IEEE Std. 1185-1994, IEEE Guide for Installation Methods for Generating Station Cables, IEEE Power & Energy Society, August 2002.
  2. National Fire Protection Association and Delmar, NEC 2011 Handbook, 12th edition, NFPA Publication, December 2010.
  3. Joseph V. Sheehan, Mark W. Earley, Jeffrey S. Sargent, John M. Caloggero and Timothy M. Croushore, National Electrical Code 2002 Handbook, 9th edition, NFPA Publication, December 2001.
  4. Insulated Conductors Committee. [Internet]. Available: http://www.pesicc.org/iccWebSite/.
  5. IEEE Std. 690-1984, IEEE Standard for the Design and Installation of Cable Systems for Class 1E Circuits in Nuclear Power Generating Stations, Power Generation Committee of the IEEE and Power Engineering Society, 2002.
  6. IEEE Std. 422-2012, IEEE Guide for the Design of Cable Raceway Systems for Electric Generating Facilities, IEEE, 2013.
  7. IEEE Std. 690-2004, IEEE Standard for the Design and Installation of Cable Systems for Class 1E Circuits in Nuclear Power Generating Stations, Power Generation Committee of the IEEE and Power Engineering Society, 2005.
  8. Committee Report, "Recommended practice on specific aspects of cable installation in power-generating stations," IEEE Transactions on Power Delivery, Volume. 4, Issue 3, pp. 1504-1506, August 2002.

Cited by

  1. Implementation of Automation Program and Efficient Cable Drum Schedule using Dynamic Programming Algorithm vol.17, pp.4, 2016, https://doi.org/10.9728/dcs.2016.17.4.257