DOI QR코드

DOI QR Code

Spectroscopic and Mechanical Properties of Nano Silica Rubber Composite Material

  • Lee, Jung Kyu (Department of Mechanical System Engineering, Pukyong National University) ;
  • Park, Juyun (Department of chemistry, Pukyong National University) ;
  • Kang, Yong-Cheol (Department of chemistry, Pukyong National University) ;
  • Koh, Sung Wi (Department of Mechanical System Engineering, Pukyong National University)
  • Received : 2016.01.18
  • Accepted : 2016.03.25
  • Published : 2016.03.30

Abstract

To manipulate the mechanical properties of acrylonitrile butadiene rubber (NBR), addition of nano-sized silica on rubber was performed and nano-silica NBR composite (NSR) materials were fabricated by press molding. The effect of volume fraction of silica in the NSR on the spectroscopic and mechanical properties has been studied.

Keywords

References

  1. J. K. Lancaster, "Polymer-based bearing materials: The role of fillers and fibre reinforcement", Tribology, Vol. 5, pp. 249-255, 1972. https://doi.org/10.1016/0041-2678(72)90103-0
  2. L. C. Vazquez, E. Hagel, B. J. Willenberg, W. Dai, F. Casanova, C. D. Batich, and M. Sarntinoranont, "Polymer-coated cannulas for the reduction of backflow during intraparenchymal infusions", J. Mater. Sci-Mater. M., Vol. 23, pp. 2037-2046, 2012. https://doi.org/10.1007/s10856-012-4652-0
  3. J. R. Tarpani, O. Maluf, and M. C. A. Gatti, "Charpy impact toughness of conventional and advanced composite laminates for aircraft construction", Materials Research, Vol. 12, pp. 395-403, 2009. https://doi.org/10.1590/S1516-14392009000400004
  4. H. W. Andresen and A. T. Echtermeyer, "Critical energy release rate for a CSM reinforced carbon fibre composite/steel bonding", Compos. Part A-Appl. S., Vol. 37, pp. 742-751, 2006. https://doi.org/10.1016/j.compositesa.2005.06.009
  5. J. C. Slattery, K.-B. Fu, and E.-S. Oh, "The mechanics and thermodynamics of edge fracture: the critical energy release rate, the compatibility constraint, and the bond potential", Philos. Mag., Vol. 92, pp. 1788-1802, 2012. https://doi.org/10.1080/14786435.2012.658448
  6. P. Yu, H. He, C. Jiang, Y. Jia, D. Wang, X. Yao, D. Jia, and Y. Luo, "Enhanced oil resistance and mechanical properties of nitrile butadiene rubber/lignin composites modified by epoxy resin", J. Appl. Polym. Sci., Vol. 133, pp. 42922, 2016.
  7. H. Kim, J. Kobashi, Y. Maeda, H. Yoshida, and M. Ozaki, "Pitch-length independent threshold voltage of polymer/cholesteric liquid crystal nano-composites", Crystals, Vol. 5, pp. 302-311, 2015. https://doi.org/10.3390/cryst5030302
  8. M. Razavizadeh and M. Jamshidi, "Adhesion of nitrile rubber (NBR) to polyethylene terephthalate (PET) fabric. Part 1: PET surface modification by methylenediphenyl di-isocyanate (MDI)", Appl. Surf. Sci., Vol. 360, pp. 429-435, 2016. https://doi.org/10.1016/j.apsusc.2015.10.137
  9. E. Kontou and G. Anthoulis, "The effect of silica nanoparticles on the thermomechanical properties of polystyrene", J. Appl. Polym. Sci., Vol. 105, pp. 1723-1731, 2007. https://doi.org/10.1002/app.26409
  10. S. H. Lee and Y. Choi, "Effect of nano-sized oxide particles on thermal and electrical properties of epoxy silica composites", Phys. Met. Metallogr+., Vol. 115, pp. 1295-1299, 2014. https://doi.org/10.1134/S0031918X14130134
  11. R. L. Zhang, T. X. Li, Y. D. Huang, and L. Liu, "Effect of the clay on the thermal stability and mechanical properties of Nitrile-Butadiene Rubber (NBR)/clay nanocomposites", J. Optoelectron. Adv. M., Vol. 16, pp. 629-633, 2014.
  12. H. S. Vaziri, M. Abadyan, M. Nouri, I. A. Omaraei, Z. Sadredini, and M. Ebrahimnia, "Investigation of the fracture mechanism and mechanical properties of polystyrene/silica nanocomposite in various silica contents", J. Mater. Sci., Vol. 46, pp. 5628-5638, 2011. https://doi.org/10.1007/s10853-011-5513-9
  13. A. Masa, R. Saito, H. Saito, T. Sakai, A. Kaesaman, and N. Lopattananon, "Phenolic resin-crosslinked natural rubber/clay nanocomposites: Influence of clay loading and interfacial adhesion on strain-induced crystallization behavior", J. Appl. Polym. Sci., Vol. 133, pp. 43214, 2016.
  14. K. P. Sau, T. K. Chaki, and D. Khastgir, "Carbon fibre filled conductive composites based on nitrile rubber (NBR), ethylene propylene diene rubber (EPDM) and their blend", Polymer, Vol. 39, pp. 6461-6471, 1998. https://doi.org/10.1016/S0032-3861(97)10188-4
  15. G. K. White, "Thermal expansion of reference materials: copper, silica and silicon", J. Phys. D Appl. Phys., Vol. 6, pp. 2070-2078, 1973. https://doi.org/10.1088/0022-3727/6/17/313
  16. S. Choi, J. Park, E. Jeong, B. J. Kim, S. Y. Son, J. M. Lee, J. S. Lee, H. J. Jo, J. Park, and Y. C. Kang, "Deposition and XPS study of Pb, Zr, and Ti films", J. Chosun Natural Sci., Vol. 7, No. 3 pp. 183-187, 2014. https://doi.org/10.13160/ricns.2014.7.3.183
  17. A. U. Alam, M. M. R. Howlader, and M. J. Deen, "Oxygen plasma and humidity dependent surface analysis of silicon, silicon dioxide and glass for direct wafer bonding", ECS J. Solid State Sc., Vol. 2, pp. P515-P523, 2013. https://doi.org/10.1149/2.007312jss