DOI QR코드

DOI QR Code

Design of a W-Band Power Amplifier Using 65 nm CMOS Technology

65 nm CMOS 공정을 이용한 W-대역 전력증폭기 설계

  • Kim, Jun-Seong (College of Information & Communication Engineering, Sungkyunkwan University) ;
  • Kwon, Oh-yun (College of Information & Communication Engineering, Sungkyunkwan University) ;
  • Song, Reem (College of Information & Communication Engineering, Sungkyunkwan University) ;
  • Kim, Byung-Sung (College of Information & Communication Engineering, Sungkyunkwan University)
  • 김준성 (성균관대학교 정보통신대학) ;
  • 권오윤 (성균관대학교 정보통신대학) ;
  • 송림 (성균관대학교 정보통신대학) ;
  • 김병성 (성균관대학교 정보통신대학)
  • Received : 2016.01.12
  • Accepted : 2016.02.26
  • Published : 2016.03.31

Abstract

In this paper, we propose 77 GHz power amplifier for long range automotive collision avoidance radar using 65 nm CMOS process. The proposed circuit has a 3-stage single power amplifier which includes common source structure and transformer. The measurement results show 18.7 dB maximum voltage gain at 13 GHz 3 dB bandwidth. The measured maximum output power is 10.2 dBm, input $P_{1dB}$ is -12 dBm, output $P_{1dB}$ is 5.7 dBm, and maximum power add efficiency is 7.2 %. The power amplifier consumes 140.4 mW DC power from 1.2 V supply voltage.

본 논문에서는 차량 충돌 방지 장거리 레이더(Long Range Radar: LRR)을 위한 77 GHz 전력증폭기를 65 nm CMOS 공정을 이용하여 설계하였다. 제안한 회로는 3단 차동 전력증폭기로 공통 소스 구조와 트랜스포머를 사용했다. 측정결과로 77 GHz에서 18.7 dB의 전압 이득과 13 GHz의 3 dB 대역폭을 얻었다. 측정된 최대 출력 전력은 10.2 dBm, 입력 $P_{1dB}$는 -12 dBm, 출력 $P_{1dB}$는 5.7 dBm이며, 측정된 최대 전력 효율은 7.2 %이다. 본 전력증폭기는 1.2 V의 공급전원으로부터 140.4 mW의 DC 전력을 소모한다.

Keywords

References

  1. 민경원, 손행선, "차량용 레이더 센서의 현황 및 연구 개발 동향", 전자공학회지, 40(6), pp. 28-38, 2013년 6 월.
  2. Sofiane Aloui et al., "RF-pad, transmission lines and balun optimization for 60 GHz 65 nm CMOS power amplifier", IEEE Radio Frequency Integrated Circuits Symposium, pp. 211-214, May 2010.
  3. Debopriyo Chowdhury et al., "Design considerations for 60 GHz transformer-coupled CMOs power amplifiers", IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2733- 2744, Oct. 2009. https://doi.org/10.1109/JSSC.2009.2028752
  4. W. L. Chan, J. R. Long, M. Spirito, and J. J. Pekarik, "A 60 GHz-band 1 V 11.5 dBm power amplifier with 11% PAE in 65nm CMOS", IEEE Solid-State Circuits Conf. Tech. Dig, pp. 380-381, 381a, Feb. 2009.
  5. A. Komijani and A. Hajimiri, "Wideband 77-GHz, 17.5- dBm fully integrated power amplifier in silicon", IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1749-1756, Aug. 2006. https://doi.org/10.1109/JSSC.2006.877258
  6. V. Giammello, E. Ragonese, and G. Palmisano, "Transformer- coupling current-reuse SiGe HBT power amplifier for 77-GHz automotive radar", IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1676-1683, Jun. 2012. https://doi.org/10.1109/TMTT.2012.2189243
  7. J. Lin, K. To, D. Hammock, B. Knappenberger, M. Majerus, and W. Huang, "Power amplifier for 77-GHz automotive radar in 90-nm LP CMOS technology", IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 292- 294, May 2010. https://doi.org/10.1109/LMWC.2010.2045598
  8. D. A. Chan, M. Feng, "Compact W-band CMOS power amplifier with gain boosting and short-circuited stub matching for high power and high efficiency operation", IEEE Microw. Wireless Compon. Lett., vol. 21, no. 2, pp. 98-00, Feb. 2011. https://doi.org/10.1109/LMWC.2010.2097584
  9. Juntaek Oh, Songcheol Hong, "A 77-GHz CMOS power amplifier with a parallel power combiner based on transmission- line transformer", IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2662-2669, Jul. 2013. https://doi.org/10.1109/TMTT.2013.2261087
  10. G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice Hall, 1997.