Acknowledgement
Supported by : NSF of China, NSF of Guangdong Province
References
- G. Bao, Z. Lou, R. Qian, and H. Wulan, Improving multipliers and zero sets in QK spaces, Collect. Math. 66 (2015), no. 3, 453-468. https://doi.org/10.1007/s13348-014-0113-z
- B. Boe, A norm on the holomorphic Besov space, Proc. Amer. Math. Soc. 131 (2003), no. 1, 235-241. https://doi.org/10.1090/S0002-9939-02-06529-2
-
P. Duren, Theory of
$H^p$ Spaces, Academic Press, New York, 1970. - K. Dyakonov, Besov spaces and outer functions, Michigan Math. J. 45 (1998), no. 1, 143-157. https://doi.org/10.1307/mmj/1030132088
-
M. Essen and H. Wulan, On analytic and meromorphic function and spaces of
${\mathcal{Q}}_K$ -type, Illionis J. Math. 46 (2002), no. 4, 1233-1258. -
M. Essen, H. Wulan, and J. Xiao, Several function-theoretic characterizations of Mobius invariant
${\mathcal{Q}}_K$ spaces, J. Funct. Anal. 230 (2006), no. 1, 78-115. https://doi.org/10.1016/j.jfa.2005.07.004 - J. Garnett, Bounded Analytic Functions, Springer, New York, 2007.
- D. Girela, Analytic functions of bounded mean oscillation, In: Complex Function Spaces, Mekrijarvi 1999, 61-170, Editor: R. Aulaskari. Univ. Joensuu Dept. Math. Rep. Ser. 4, Univ. Joensuu, Joensuu, 2001.
-
J. Pau, Bounded Mobius invariant
${\mathcal{Q}}_K$ spaces, J. Math. Anal. Appl. 338 (2008), no. 2, 1029-1042. https://doi.org/10.1016/j.jmaa.2007.05.069 -
H.Wulan and F. Ye, Some results in Mobius invariant
${\mathcal{Q}}_K$ spaces, Complex Var. Elliptic Equ. 60 (2015), no. 11, 1602-1611. https://doi.org/10.1080/17476933.2015.1037747 -
J. Xiao, Holomorphic
$\mathcal{Q}$ Classes, Springer, LNM 1767, Berlin, 2001. -
J. Xiao, Some results on
${\mathcal{Q}}_p$ spaces, 0 < p < 1, continued, Forum Math. 17 (2005), no. 4, 637-668. https://doi.org/10.1515/form.2005.17.4.637 -
J. Xiao, Geometric
${\mathcal{Q}}_p$ Functions, Birkhauser Verlag, Basel-Boston-Berlin, 2006. - K. Zhu, Operator Theory in Function Spaces, American Mathematical Society, Providence, RI, 2007.
Cited by
- On Dirichlet Spaces With a Class of Superharmonic Weights vol.70, pp.04, 2018, https://doi.org/10.4153/CJM-2017-005-1