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ON ABSOLUTE VALUES OF QK FUNCTIONS

Guanlong Bao, Zengjian Lou, Ruishen Qian, and Hasi Wulan

Abstract. In this paper, the effect of absolute values on the behavior
of functions f in the spaces QK is investigated. It is clear that g ∈
QK(∂D) ⇒ |g| ∈ QK(∂D), but the converse is not always true. For f

in the Hardy space H2, we give a condition involving the modulus of
the function only, such that the condition together with |f | ∈ QK(∂D) is
equivalent to f ∈ QK . As an application, a new criterion for inner-outer
factorisation of QK spaces is given. These results are also new for Qp

spaces.

1. Introduction

Denote by ∂D the boundary of the unit disk D in the complex plane C.
Let H(D) be the space of functions analytic in D. Throughout this paper, we
assume that K : [0,∞) → [0,∞) is a right-continuous and increasing function.
A function f ∈ H(D) belongs to the space QK if

‖f‖2QK
= sup

a∈D

∫

D

|f ′(z)|2K (g(a, z))dA(z) <∞,

where dA is the area measure on D and g(a, z) is the Green function in D with
singularity at a ∈ D. By [5, Theorem 2.1], we know that ‖f‖2QK

is equivalent
to

sup
a∈D

∫

D

|f ′(z)|2K
(

1− |σa(z)|
2
)

dA(z),

where σa(z) =
a−z
1−az

is a Möbius transformation of D. If K(t) = tp, 0 ≤ p <∞,

then the space QK gives the space Qp (cf. [11, 13]). In particular, Q0 is
the Dirichlet space; Q1 = BMOA, the space of functions with bounded mean
oscillation on D; Qp is the Bloch space for all p > 1. See [5] and [6] for more
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results on QK spaces. Let QK(∂D) be the space of f ∈ L2(∂D) with

‖f‖2QK(∂D) = sup
I⊂∂D

∫

I

∫

I

|f(ζ)− f(η)|2

|ζ − η|2
K

(

|ζ − η|

|I|

)

|dζ||dη| <∞.

Clearly, if K(t) = t2, then QK(∂D) is equal to BMO(∂D), the space of func-
tions having bounded mean oscillation on ∂D (see [7]).

To study QK and QK(∂D), we usually need two constraints on K as follows.

(1.1)

∫ 1

0

ϕK(s)

s
ds <∞

and

(1.2)

∫ ∞

1

ϕK(s)

s2
ds <∞,

where
ϕK(s) = sup

0<t≤1
K(st)/K(t), 0 < s <∞.

If K satisfies (1.2), then QK $ BMOA $ H2, where H2 denotes the Hardy
space in D (see [3, 7]). Thus, if K satisfies (1.2), then the function f ∈ QK

has its non-tangential limit ˜f almost everywhere on ∂D. We also know that for

f ∈ H2 if K satisfies (1.1) and (1.2), then f ∈ QK if and only if ˜f ∈ QK(∂D).
Using the triangle inequality, one gets that if g ∈ QK(∂D), then |g| also belongs
to QK(∂D). In general, the converse is not true. Consider

g(eit) =

{

log t, 0 < t < π,

− log |t|, −π < t < 0.

By [8, p. 66], |g| ∈ BMO(∂D), but g 6∈ BMO(∂D). For g ∈ H2, it is natural
to seek a condition which together with |g̃| ∈ QK(∂D) is equivalent to g̃ ∈
QK(∂D). Our main result, Theorem 1.1, is even new for Qp spaces.

Theorem 1.1. Suppose that K satisfies (1.1) and (1.2). Let f ∈ H2. Set

dµz(ζ) =
1− |z|2

2π|ζ − z|2
|dζ|, z ∈ D, ζ ∈ ∂D.

Then the following conditions are equivalent.

(i) f ∈ QK .

(ii) ˜f ∈ QK(∂D).

(iii) | ˜f | ∈ QK(∂D) and

(1.3) sup
a∈D

∫

D

(∫

∂D

| ˜f(ζ)|dµz(ζ) − |f(z)|

)2
K(1− |σa(z)|

2)

(1− |z|2)2
dA(z) <∞.

Applying Theorem 1.1, in Section 4, we will show a new criterion for inner-
outer factorisation of QK spaces.

In this article, the symbol A ≈ B means that A . B . A. We say that
A . B if there exists a constant C such that A ≤ CB.
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2. Preliminaries

Given f ∈ L2(∂D), let ̂f be the Poisson extension of f . Namely,

̂f(z) =

∫

∂D

f(ζ)dµz(ζ), z ∈ D.

We first give the following characterization of QK(∂D) spaces. In particular, if
K(t) = tp, 0 < p < 1, the corresponding result was proved in [12].

Theorem 2.1. Suppose that K satisfies (1.1) and (1.2). Let f ∈ L2(∂D).
Then f ∈ QK(∂D) if and only if

(2.1) sup
a∈D

∫

D

(∫

∂D

|f(ζ)|2dµz(ζ)− | ̂f(z)|2
)

K(1− |σa(z)|
2)

(1− |z|2)2
dA(z) <∞.

To prove Theorem 2.1, we need the following estimate.

Lemma 2.2. Let (1.1) and (1.2) hold for K. If s < 1 + c and 2s+ r − 4 ≥ 0,
then

∫

D

K
(

1− |σa(w)|
2
)

(1− |w|2)s|1− wz|r
dA(w) ≈

K
(

1− |σa(z)|
2
)

(1− |z|2)s+r−2

for all a, z ∈ D. Here c is a small enough positive constant which depends only

on (1.1) and (1.2).

Proof. We point out that
∫

D

K
(

1− |σa(w)|
2
)

(1− |w|2)s|1− wz|r
dA(w) .

K
(

1− |σa(z)|
2
)

(1− |z|2)s+r−2

was proved in [1]. So we need only to prove the reverse. For any z ∈ D, let

E(z, 1/2) = {w ∈ D : |σz(w)| < 1/2}

be the pseudo-hyperbolic disk. It is well known that

1− |z| ≈ 1− |w| ≈ |1 − wz|

for all w ∈ E(z, 1/2). Furthermore, by [14, Lemma 4.30], we have that |1 −
aw| ≈ |1 − az| for all a ∈ D and w ∈ E(z, 1/2). Since K satisfies (1.2),
K(2t) ≈ K(t) for all t ∈ (0, 1). We obtain

∫

D

K
(

1− |σa(w)|
2
)

(1 − |w|2)s|1− wz|r
dA(w) ≥

∫

E(z,1/2)

K
(

1− |σa(w)|
2
)

(1− |w|2)s|1− wz|r
dA(w)

≈
K
(

1− |σa(z)|
2
)

(1− |z|2)s+r−2
,

which gives the desired result. �

Proof of Theorem 2.1. For any f ∈ L2(∂D), the Littlewood-Paley identity ([7,
p. 228]) shows that

(2.2)

∫

D

|∇ ̂f(w)|2 log
1

|w|
dA(w) =

1

2π

∫

∂D

|f(ζ)− ̂f(0)|2|dζ|.
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Replacing ̂f by f̂ ◦ σz in (2.2) for z ∈ D, one obtains
∫

∂D

|f(ζ)|2dµz(ζ)− | ̂f(z)|2 ≈

∫

D

|∇ ̂f(w)|2(1 − |σz(w)|
2)dA(w).

Using Fubini’s theorem and Lemma 2.2, we obtain, for all a ∈ D, that
∫

D

(∫

∂D

|f(ζ)|2dµz(ζ) − | ̂f(z)|2
)

K(1− |σa(z)|
2)

(1 − |z|2)2
dA(z)

≈

∫

D

(∫

D

|∇ ̂f(w)|2(1 − |σz(w)|
2)dA(w)

)

K(1− |σa(z)|
2)

(1− |z|2)2
dA(z)

≈

∫

D

|∇ ̂f(w)|2dA(w)

∫

D

(1− |σz(w)|
2)K(1− |σa(z)|

2)

(1− |z|2)2
dA(z)

≈

∫

D

|∇ ̂f(w)|2K(1− |σa(w)|
2)dA(w).

By [9], we know that f ∈ QK(∂D) if and only if

sup
a∈D

∫

D

|∇ ̂f(z)|2K(1− |σa(z)|
2)dA(z) <∞.

Therefore, f ∈ QK(∂D) if and only if

sup
a∈D

∫

D

(∫

∂D

|f(ζ)|2dµz(ζ)− | ̂f(z)|2
)

K(1− |σa(z)|
2)

(1 − |z|2)2
dA(z) <∞.

�

By [6], for f ∈ H2, if (1.1) and (1.2) hold for K, then f ∈ QK if and only

if ˜f ∈ QK(∂D). This, together with Theorem 2.1, gives the following result
immediately which was also obtained in [10] by a different method.

Corollary 2.3. Suppose that K satisfies (1.1) and (1.2). Let f ∈ H2. Then

f ∈ QK if and only if

sup
a∈D

∫

D

(∫

∂D

| ˜f(ζ)|2dµz(ζ)− |f(z)|2
)

K(1− |σa(z)|
2)

(1 − |z|2)2
dA(z) <∞.

3. Proof of Theorem 1.1

Recall that B ∈ H(D) is called an inner function if B is bounded in D and

| ˜B(ζ)| = 1 for almost every ζ ∈ ∂D. An outer function for the Hardy space H2

is the function of the form

O(z) = η exp

(∫

∂D

ζ + z

ζ − z
logψ(ζ)

|dζ|

2π

)

, η ∈ ∂D,

where ψ > 0 a.e. on ∂D, logψ ∈ L1(∂D) and ψ ∈ L2(∂D). See [3] for more
results on inner and outer functions. Using a technique in [2], we give the proof
of Theorem 1.1 as follows.
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Proof of Theorem 1.1. Note that (i)⇔(ii) was proved in [6].

(i)⇒(iii). For f ∈ QK , we have that ˜f ∈ QK(∂D). The triangle inequality

gives that | ˜f | ∈ QK(∂D). For any z ∈ D, it follows by Hölder’s inequality that

(∫

∂D

| ˜f(ζ)|dµz(ζ)− |f(z)|

)2

≤

(∫

∂D

| ˜f(ζ)− f(z)|dµz(ζ)

)2

≤

∫

∂D

| ˜f(ζ) − f(z)|2dµz(ζ)

=

∫

∂D

| ˜f(ζ)|2dµz(ζ) − |f(z)|2.

Since f ∈ QK , the above estimate, together with Corollary 2.3, gives (1.3).
(iii)⇒(i). If f ≡ 0, the result is true. Note that f ∈ H2. If f 6≡ 0, then

f must be of the form BO, where B is an inner function and O is an outer
function of H2 (see [3]). By the estimates of B and O respectively, Böe [2,
p. 237] gave that for any z ∈ D,

|f ′(z)| ≤
4

1− |z|

(∫

∂D

∣

∣

∣

∣

| ˜f(ζ)| −
̂

| ˜f |(z)

∣

∣

∣

∣

dµz(ζ) +
̂

| ˜f |(z)− |f(z)|

)

.

Here we remind that

̂

| ˜f |(z) =

∫

∂D

| ˜f(ζ)|dµz(ζ).

Thus, for any a ∈ D, by Hölder’s inequality, we deduce that
∫

D

|f ′(z)|2K(1− |σa(z)|
2)dA(z)

.

∫

D

(∫

∂D

∣

∣

∣

∣

| ˜f(ζ)| −
̂

| ˜f |(z)

∣

∣

∣

∣

dµz(ζ)

)2
K(1− |σa(z)|

2)

(1− |z|2)2
dA(z)

+

∫

D

(

̂

| ˜f |(z)− |f(z)|

)2
K(1− |σa(z)|

2)

(1 − |z|2)2
dA(z)

.

∫

D

(

∫

∂D

(

| ˜f(ζ)| −
̂

| ˜f |(z)

)2

dµz(ζ)

)

K(1− |σa(z)|
2)

(1− |z|2)2
dA(z)

+

∫

D

(

̂

| ˜f |(z)− |f(z)|

)2
K(1− |σa(z)|

2)

(1 − |z|2)2
dA(z)

≈

∫

D

(

∫

∂D

| ˜f(ζ)|2dµz(ζ) −

(

̂

| ˜f |(z)

)2
)

K(1− |σa(z)|
2)

(1− |z|2)2
dA(z)

+

∫

D

(

̂

| ˜f |(z)− |f(z)|

)2
K(1− |σa(z)|

2)

(1 − |z|2)2
dA(z).

By Theorem 2.1 and (1.3), we have that f ∈ QK . The proof is complete. �
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Remark. J. Xiao [12] gave an interesting characterization of Qp spaces in terms
of functions with absolute values. Namely, for f ∈ H2, if 0 < p < 1, then

f ∈ Qp if and only if | ˜f | ∈ Qp(∂D) and

sup
a∈D

∫

D

(

(∫

∂D

| ˜f(ζ)|dµz(ζ)

)2

− |f(z)|2

)

(1 − |σa(z)|
2)p

(1− |z|2)2
dA(z) <∞.

We show that our Theorem 1.1 implies Xiao’s result above. In fact, set K(t) =
tp, 0 < p < 1, in our Theorem 1.1 and Corollary 2.3. Note that

(∫

∂D

| ˜f(ζ)|dµz(ζ)

)2

− |f(z)|2 ≥

(∫

∂D

| ˜f(ζ)|dµz(ζ)− |f(z)|

)2

and
(∫

∂D

| ˜f(ζ)|dµz(ζ)

)2

≤

∫

∂D

| ˜f(ζ)|2dµz(ζ).

Thus, one can obtain Xiao’s result directly.

4. An application to inner-outer factorisation of QK spaces

In this section, we will show a new criterion for inner-outer decomposition of
QK spaces. In fact, an inner-outer factorisation characterization of QK spaces
has been obtained in [6] as follows.

Theorem A. Let K satisfy (1.1) and (1.2) with

˜K(|z|2) = −
∂2K(1− |z|2)

∂z∂z
, z ∈ D.

Let f ∈ H2 with f 6≡ 0. Then f ∈ QK if and only if f = BO, where B is an

inner function and O is an outer function in QK for which

(4.1) sup
a∈D

∫

D

|O(z)|2(1− |B(z)|2) ˜K
(

|σa(z)|
2
)

|σ′
a(z)|

2dA(z) <∞.

As an application of Theorem 1.1, we obtain the following result.

Theorem 4.1. Let K satisfy (1.1) and (1.2) with

˜K(|z|2) = −
∂2K(1− |z|2)

∂z∂z
, z ∈ D.

Let f ∈ H2 with f 6≡ 0. Then f ∈ QK if and only if f = BO, where B is an

inner function and O is an outer function in QK for which

(4.2) sup
a∈D

∫

D

|O(z)|2(1 − |B(z)|2)2 ˜K
(

|σa(z)|
2
)

|σ′
a(z)|

2dA(z) <∞.

Remark. Theorem 4.1 shows that formula (4.1) in Theorem A can be replaced
by the weaker condition (4.2), and this result is also new for Qp spaces.
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Proof. Necessity. This is a direct result from Theorem A.
Sufficiency. Let f = BO and O ∈ QK . Note that O ∈ QK is equivalent

to ˜O ∈ QK(∂D). By the triangle inequality, one gets | ˜O| ∈ QK(∂D). Hence

| ˜f | ∈ QK(∂D). Observe that

(4.3)

∫

∂D

| ˜f(ζ)|dµz(ζ)− |f(z)|

=

∫

∂D

| ˜O(ζ)|dµz(ζ)− |O(z)|+ |O(z)| − |B(z)O(z)|.

Wulan and Ye [10] gave that if K satisfies (1.1) and (1.2), then for all z ∈ D

(4.4) ˜K(|z|2) ≈
K(1− |z|2)

(1− |z|2)2
.

By Hölder’s inequality, ˜O ∈ QK(∂D) and Corollary 2.3, we show that for any
a ∈ D,

∫

D

(∫

∂D

| ˜O(ζ)|dµz(ζ)− |O(z)|

)2
K(1− |σa(z)|

2)

(1− |z|2)2
dA(z)

≤

∫

D

(∫

∂D

∣

∣

∣

˜O(ζ)−O(z)
∣

∣

∣

2

dµz(ζ)

)

K(1− |σa(z)|
2)

(1− |z|2)2
dA(z)

=

∫

D

(∫

∂D

| ˜O(ζ)|2dµz(ζ) − |O(z)|2
)

K(1− |σa(z)|
2)

(1− |z|2)2
dA(z) <∞.

Combining the above inequality, (4.2), (4.3) and (4.4), we get

sup
a∈D

∫

D

(∫

∂D

| ˜f(ζ)|dµz(ζ)− |f(z)|

)2
K(1− |σa(z)|

2)

(1− |z|2)2
dA(z) <∞.

Applying Theorem 1.1, we get f ∈ QK . The proof is complete. �

For f ∈ QK ⊆ H2, if we ignore the choice of a constant with modulus one,
then f has a unique decomposition with the form f(z) = B(z)O(z), where B
is an inner function and O is an outer function. Combining this with Theorem
A and Theorem 4.1, we obtain an interesting result as follows.

Corollary 4.2. Suppose that K satisfies (1.1) and (1.2). Let B be an inner

function and let O be an outer function in QK . Then the following conditions

are equivalent.

(i) For some p ∈ [1, 2],

sup
a∈D

∫

D

|O(z)|2(1− |B(z)|2)p ˜K
(

|σa(z)|
2
)

|σ′
a(z)|

2dA(z) <∞.

(ii) For all p ∈ [1, 2],

sup
a∈D

∫

D

|O(z)|2(1− |B(z)|2)p ˜K
(

|σa(z)|
2
)

|σ′
a(z)|

2dA(z) <∞.
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