DOI QR코드

DOI QR Code

WIENER'S LEMMA FOR INFINITE MATRICES OF GOHBERG-BASKAKOV-SJÖSTRAND CLASS

  • Received : 2015.03.11
  • Published : 2016.03.31

Abstract

In this paper, we introduce a quasi-Banach algebra of infinite matrices, which is inverse-closed in the Banach algebra B(${\ell}^2$) of all bounded operators on ${\ell}^2$.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. R. Balan, P. G. Casazza, C. Heil and Z. Landau, Density, overcompleteness and localizations of frames I. theory; II. Gabor System, J. Fourier Anal. Appl. 12 (2006), no. 2, 105-143; no. 3, 309-344. https://doi.org/10.1007/s00041-006-6022-0
  2. B. A. Barnes, The spectrum of integral operators on Lebesgue spaces, J. Operator Theory 18 (1987), no. 1, 115-132.
  3. A. G. Baskakov, Wiener's theorem and asymptotic estimates for elements of inverse matrices, Funktsional. Anal. i Prilozhen 24 (1990), no. 3, 64-65; translation in Funct. Anal. Appl. 24 (1990), no. 3, 222-224. https://doi.org/10.1007/BF01077924
  4. M. E. Gordji and M. B. Savadkouhi, Approximation of generalized homomorphisms in quasi-Banach algebras, An. St. Univ. Ovidius Constanta 17 (2009), 203-214.
  5. K. Grochenig, Time-frequency analysis of Sjostrand's class, Rev. Mat. Iberoam. 22 (2006), no. 2, 703-724.
  6. K. Grochenig, Wiener's lemma: theme and variations, an introduction to spectral invariance and its applications, In Four Short Courses on Harmonic Analysis: Wavelets, Frames, Time-Frequency Methods, and Applications to Signal and Image Analysis, pp. 175-233, Edited by P. Massopust and B. Forster, Birkhauser, Boston 2010.
  7. K. Grochenig and A. Klotz, Noncommutative approximation: inverse-closed subalgebras and off-diagonal decay of matrices, Constr. Approx. 32 (2010), no. 3, 429-466. https://doi.org/10.1007/s00365-010-9101-z
  8. K. Grochenig and M. Leinert, Wiener's lemma for twisted convolution and Gabor frames, J. Amer. Math. Soc. 17 (2003), 1-18.
  9. K. Grochenig and M. Leinert, Symmetry of matrix algebras and symbolic calculus for infinite matrices, Trans. Amer. Math. Soc. 358 (2006), 2695-2711. https://doi.org/10.1090/S0002-9947-06-03841-4
  10. K. Grochenig and T. Strohmer, Pseudo-differential operators on locally compact Abelian groups and Sjostrand's symbol class, J. Reine Angew. Math. 613 (2007), 121-146.
  11. I. Krishtal, Wiener's lemma: pictures at exhibition, Rev. Un. Mat. Argentina 52 (2011), no. 2, 61-79.
  12. K. Krishtal and K. A. Okoujou, Invertibility of the Gabor frame operator on the Wiener amalgam space, J. Approx. Theory 153 (2008), no. 2, 212-224. https://doi.org/10.1016/j.jat.2008.03.004
  13. V. G. Kurbatov, Algebras of difference and integral operators, Funkt. Anal. Prilozh. 24 (1990), no. 2, 87-88.
  14. N. Motee and Q. Sun, Sparsity measures for spatially decaying systems, arXiv: 1402.4148v3.
  15. C. E. Shin and Q. Sun, Stability of localized operators, J. Funct. Anal. 256 (2009), no. 8, 2417-2439. https://doi.org/10.1016/j.jfa.2008.09.011
  16. C. E. Shin and Q. Sun, Wiener's lemma: localization and various approaches, Appl. Math. J. Chinese Univ. Ser. A 28 (2013), no. 4, 465-484. https://doi.org/10.1007/s11766-013-3215-6
  17. Q. Sun, Wiener's lemma for infinite matrices with polynomial off-diagonal decay, C. Acad. Sci. Paris Ser I 340 (2005), no. 8, 567-570. https://doi.org/10.1016/j.crma.2005.03.002
  18. Q. Sun, Nonuniform average sampling and reconstruction of signals with finite rate of innovation, SIAM J. Math. Anal. 38 (2006/07), no. 5, 1389-1422. https://doi.org/10.1137/05063444X
  19. Q. Sun, Wiener's lemma for infinite matrices, Trans. Amer. Math. Soc. 359 (2007), no. 7, 3099-3123. https://doi.org/10.1090/S0002-9947-07-04303-6
  20. Q. Sun, Wiener's lemma for infinite matrices II, Constr. Approx. 34 (2011), no. 2, 209-235. https://doi.org/10.1007/s00365-010-9121-8
  21. Q. Sun, Frames in spaces with finite rate of innovations, Adv. Comput. Math. 28 (2008), no. 4, 301-329. https://doi.org/10.1007/s10444-006-9021-4
  22. R. Tessera, The Schur algebra is not spectral in ${\mathcal{B}}({\ell}^2)$, Monatsh. Math. 164 (2010), 115-118.
  23. N. Wiener, Tauberian theorem, Ann. of Math. 33 (1932), no. 1, 1-100. https://doi.org/10.2307/1968102