References
- L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand Reinhold, Princeton, N.J., 1966.
- C. Croke, A. Fathi, and J. Feldman, The marked length-spectrum of a surface of nonpositive curvature, Topology 31 (1992), no. 4, 847-855. https://doi.org/10.1016/0040-9383(92)90013-8
- M. Duchin, C. Leininger, and K. Rafi, Length spectra and degeneration of flat metrics, Invent. Math. 182 (2010), no. 2, 231-277. https://doi.org/10.1007/s00222-010-0262-y
- D. Dumas and M.Wolf, Projective structures, grafting and measured laminations, Geom. Topol. 12 (2008), no. 1, 351-386. https://doi.org/10.2140/gt.2008.12.351
- A. Fathi, F. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces, Asterisque, Vol. 66-67, Soc. Math. France, Paris, 1979.
- Y. Kamishima and Ser P. Tan, Deformation spaces on geometric structures, Aspects of low-dimensional manifolds, 263299, Adv. Stud. Pure Math., 20, Kinokuniya, Tokyo, 1992.
- S. Kerckhoff, The asymptotic geometry of Teichmuller space, Topology 19 (1980), no. 1, 23-41. https://doi.org/10.1016/0040-9383(80)90029-4
- S. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235-265. https://doi.org/10.2307/2007076
- I. Kim, Complex projective structures and the marked length rigidity, RIMS Kokyuroku (Kyoto University) 1104 (1999), 153-159.
-
J. Lehner, On the
$A_q({\Gamma}){\subset}B_q({\Gamma})$ conjecture for infinitely generated groups, in Discontinuous groups and Riemann surfaces (Proc. Conf. Univ. Maryland, College Park, Md., 1973), pp. 283-288. Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N. J., 1974. - Z. Li, Teichmuller metric and length spectrum of Riemann surface, Sci. Sinica Ser. A 29 (1986), no. 3, 265-274.
- Z. Li, Length spectrums of Riemann surfaces and the Teichmuller metric, Bull. London Math. Soc. 35 (2003), no. 2, 247-254. https://doi.org/10.1112/S0024609302001789
- L. Liu, Z. Sun, and H. Wei, Topological equivalence of metrics in Teichmuller space, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 1, 159-170.
- B. Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 381-386. https://doi.org/10.5186/aasfm.1985.1042
- C. McMullen, Complex earthquakes and Teichmuller theory, J. Amer. Math. Soc. 11 (1998), no. 2, 283-320. https://doi.org/10.1090/S0894-0347-98-00259-8
- S. Nag, The complex analytic theory of Teichmuller spaces, John Wiley & Sons, New York, 1988.
- J.-P. Otal, Le spectre marque des longueurs des surfaces a courbure negative, Ann. of Math. (2) 131 (1990), 151-162. https://doi.org/10.2307/1971511
- T. Sorvali, The boundary mapping induced by an isomorphism of covering groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 526 (1972), 1-31.
- T. Sorvali, On Teichmuller space of tori, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 1, 7-11. https://doi.org/10.5186/aasfm.1975.0122
- K. Strebel, Quadratic Differentials, Springer-Verlag, New York, 1984.
- H. Tanigawa, Grafting, harmonic maps and projective structures on surfaces, J. Differential Geom. 47 (1997), no. 3, 399-419. https://doi.org/10.4310/jdg/1214460545
- W. Thurston, Minimal stretch maps between hyperbolic surfaces, preprint, 1998.
- S. Wolpert, The length spectra as moduli for compact Riemann surfaces, Ann. of Math. 109 (1979), no. 2, 323-351. https://doi.org/10.2307/1971114