DOI QR코드

DOI QR Code

습식산화반응을 통한 중력식반응기로부터의 슬러지 처리 및 유기산 생산 공정모사

Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation

  • 박권우 (한국에너지기술연구원 바이오자원순환연구실) ;
  • 서태완 (한국건설기술연구원 환경플랜트 연구소) ;
  • 이홍철 (한국건설기술연구원 환경플랜트 연구소) ;
  • 황인주 (한국건설기술연구원 환경플랜트 연구소)
  • Park, Gwon Woo (Biomass and Waste Energy Laboratory, KIER) ;
  • Seo, Tae Wan (Environmental and Plant Engineering Research Institute, KICT) ;
  • Lee, Hong-Cheol (Environmental and Plant Engineering Research Institute, KICT) ;
  • Hwang, In-Ju (Environmental and Plant Engineering Research Institute, KICT)
  • 투고 : 2015.08.13
  • 심사 : 2015.11.03
  • 발행 : 2016.04.01

초록

오늘날 폐수처리는 슬러지의 증가와 환경규제의 이유로 매우 중요해지고 있다. 슬러지처리는 폐수처리플랜트에 있어서 운영비의 50%를 차지하므로 슬러지 분해에 있어서 경제성 있는 방법이 대두되고 있다. 습식산화 반응은 폐수의 유기물을 효과적으로 제거해주고 슬러지 분해 뿐만 아니라 바이오연료의 전구체로 쓰일 수 있는 휘발성 유기산이 부산물로도 나온다. 습식산화 반응은 고온 고압의 높은 조건의 단점이 존재하지만 중력식 반응기를 통한 수두압으로 운영비를 줄일 수 있다. 본 연구에서는 상용프로그램인 Aspen Plus를 이용하여 아임계 조건에서 PSRK 상태방정식을 이용하여 공정모사 하였다. 중력식 반응기의 길이, 산화제 종류, 슬러지 유량과 산화제 주입 위치에 따라 사례 연구를 해보았으며 중력식 반응기 1000 m, 유량이 2 ton/h일 때에 유기물의 전환률은 92.02%, 유기산 효율은 0.17 g/g이였다.

Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively.

키워드

참고문헌

  1. Ahn, J., "Kinetics Study for Wet Air Oxidation of Sewage Sludge," Journal-korean Society of Environmental Engineers, 27, 746(2005).
  2. Chatzisymeon, E., Diamadopoulos, E. and Mantzavinos, D., "Effect of Key Operating Parameters on the Non-catalytic Wet Oxidation of Olive Mill Wastewaters," Water Science and Technology, 59, 2509(2009). https://doi.org/10.2166/wst.2009.321
  3. Cho, I. H., Ko, I. B. and Kim, J. T., "Technology Trend on the Increase of Biogas Production and Sludge Reduction in Wastewater Treatment Plants: Sludge Pre-treatment Techniques," Korean Chemical Engineering Research 52, 413(2014). https://doi.org/10.9713/kcer.2014.52.4.413
  4. Dietrich, M., Randall, T. and Canney, P., "Wet Air Oxidation of Hazardous Organics in Wastewater," Environmental Progress 4, 171(1985). https://doi.org/10.1002/ep.670040312
  5. Fei, Q., Chang, H. N., Shang, L., Kim, N. and Kang, J., "The Effect of Volatile Fatty Acids as a Sole Carbon Source on Lipid Accumulation by Cryptococcus Albidus for Biodiesel Production," Bioresource Technology 102, 2695(2011). https://doi.org/10.1016/j.biortech.2010.10.141
  6. Gardner, L., "Stainless Steel Structures in Fire," Proceedings of the ICE-Structures and Buildings, 160, 129(2007). https://doi.org/10.1680/stbu.2007.160.3.129
  7. Genc, N., Yonsel, S., Dagasan, L. and Onar, A. N., "Wet Oxidation: A Pre-treatment Procedure for Sludge," Waste Management, 22, 611(2002). https://doi.org/10.1016/S0956-053X(02)00040-5
  8. Gran-Heedfeld, J., Schluter, S. and Daun, M., "Modelling and Simulation of a Deep Well Reactor for the Wet Air Oxidation of Sewage Sludge," Chemical Engineering and Processing: Process Intensification 34, 121(1995). https://doi.org/10.1016/0255-2701(94)03007-3
  9. Hii, K., Baroutian, S., Parthasarathy, R., Gapes, D. J. and Eshtiaghi, N., "A Review of Wet Air Oxidation and Thermal Hydrolysis Technologies in Sludge Treatment," Bioresource Technology, 155, 289(2014). https://doi.org/10.1016/j.biortech.2013.12.066
  10. Holderbaum, T. and Gmehling, J., "Psrk: A Group Contribution Equation of State Based on Unifac," Fluid Phase Equilibria, 70, 251(1991). https://doi.org/10.1016/0378-3812(91)85038-V
  11. Kodra, D. and Balakotaiah, V., "Two-phase Model for Subcritical Oxidation of Aqueous Wastes in a Deep-well Reactor," Hazardous Waste and Hazardous Materials, 10, 247(1993). https://doi.org/10.1089/hwm.1993.10.247
  12. Kolaczkowski, S., Plucinski, P., Beltran, F., Rivas, F. and McLurgh, D., "Wet Air Oxidation: A Review of Process Technologies and Aspects in Reactor Design," Chemical Engineering Journal 73, 143(1999). https://doi.org/10.1016/S1385-8947(99)00022-4
  13. Kritzer, P. and Dinjus, E., "An Assessment of Supercritical Water Oxidation (scwo): Existing Problems, Possible Solutions and New Reactor Concepts," Chemical Engineering Journal 83, 207(2001). https://doi.org/10.1016/S1385-8947(00)00255-2
  14. Lee, S. U., Jung, K., Park, G. W., Seo, C., Hong, Y. K., Hong, W. H. and Chang, H. N., "Bioprocessing Aspects of Fuels and Chemicals from Biomass," Korean Journal of Chemical Engineering, 29, 831(2012). https://doi.org/10.1007/s11814-012-0080-6
  15. Li, L., Chen, P. and Gloyna, E. F., "Generalized Kinetic Model for Wet Oxidation of Organic Compounds," AIChE Journal, 37, 1687(1991). https://doi.org/10.1002/aic.690371112
  16. Luan, M., Jing, G., Piao, Y., Liu, D. and Jin, L., "Treatment of Refractory Organic Pollutants in Industrial Wastewater by Wet Air Oxidation," Arabian Journal of Chemistry (2012).
  17. Luck, F., "Wet Air Oxidation: Past, Present and Future," Catalysis Today, 53, 81(1999). https://doi.org/10.1016/S0920-5861(99)00112-1
  18. Ming, G. and Zhenhao, D., "Prediction of Oxygen Solubility in Pure Water and Brines up to High Temperatures and Pressures," Geochimica et Cosmochimica Acta, 74, 5631(2010). https://doi.org/10.1016/j.gca.2010.06.034
  19. Mishra, V. S., Mahajani, V. V. and Joshi, J. B., "Wet Air Oxidation," Industrial & Engineering Chemistry Research 34, 2(1995). https://doi.org/10.1021/ie00040a001
  20. Park, G. W., Fei, Q., Jung, K., Chang, H. N., Kim, Y. C., Kim, N. J., Kim, S. and Cho, J., "Volatile Fatty Acids Derived from Waste Organics Provide an Economical Carbon Source for Microbial Lipids/ biodiesel Production," Biotechnology Journal 9, 1536(2014). https://doi.org/10.1002/biot.201400266
  21. Park, G. W., Seo, C., Jung, K., Chang, H. N., Kim, W. and Kim, Y.-C., "A Comprehensive Study on Volatile Fatty Acids Production from Rice Straw Coupled with Microbial Community Analysis," Bioprocess and Biosystems Engineering, 38, 1157(2015). https://doi.org/10.1007/s00449-015-1357-z
  22. Su, C.-S., "Prediction of Solubilities of Solid Solutes in Carbon Dioxide-expanded Organic Solvents Using the Predictive Soaveredlich- kwong (psrk) Equation of State," Chemical Engineering Research and Design, 91, 1163(2013). https://doi.org/10.1016/j.cherd.2012.12.004