DOI QR코드

DOI QR Code

Solubility of Hydrogen Sulfide and Methane in Ionic Liquids: 1-Ethy-3-methylimidazolium Trifluoromethanesulfonate and 1-Butyl-1-methylpyrrolidinium Trifluoromethanesulfonate

1-Ethyl-3-methylimidazolium trifluoromethanesulfonate와 1-Butyl-1-methylpyrrolidinium trifluoromethanesulfonate 이온성 액체에 대한 황화수소와 메탄의 용해도

  • Lee, Byung-Chul (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 이병철 (한남대학교 화공신소재공학과)
  • Received : 2016.02.12
  • Accepted : 2016.02.23
  • Published : 2016.04.01

Abstract

Solubility data of hydrogen sulfide ($H_2S$) and methane ($CH_4$) in two kinds of ionic liquids with the same anion: 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([emim][TfO]) and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ([bmpyr][TfO]) are presented at pressures up to about 30 MPa and at temperatures between 303 K and 343 K. The gas solubilities in ionic liquids were determined by measuring the bubble point pressures of the gas + ionic liquid mixtures with various compositions at different temperatures using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. The $H_2S$ solubilities in ionic liquid increased with the increase of pressure and decreased with the increase of temperature. On the other hand, the $CH_4$ solubilities in ionic liquid increased significantly with the increase of pressure, but there was little effect of temperature on the $CH_4$ solubility. For the ionic liquds [emim][TfO] and [bmpyr][TfO] with the same anion, the solubility of $H_2S$ as a molality basis was substantially similar, regardless of the temperature and pressure conditions as a molar concentration basis. Comparing the solubilities of $H_2S$ and $CH_4$ in the ionic liquid [emim][TfO], the solubilities of $H_2S$ were much greater than those of $CH_4$. For the same type of ionic liquid, the solubility data of $H_2S$ and $CH_4$ obtained in this study were compared to the solubility data of $CO_2$ from the literature. When compared at the same pressure and temperature conditions, the $CO_2$ solubility was in between the solubility of $H_2S$ and $CH_4$.

동일한 음이온을 가진 두 가지 종류의 이온성 액체인 1-ethy-3-methylimidazolium trifluoromethanesulfonate ([emim][TfO])와 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ([bmpyr][TfO])를 대상으로 약 303 K로부터 약 343 K의 온도 범위와 약 30 MPa까지의 압력 범위에서 이온성 액체에 녹는 황화수소($H_2S$)와 메탄($CH_4$)의 용해도를 측정하였다. 가변부피투시창이 장착된 고압용 상평형 장치를 사용하여 온도를 변화시키면서 여러 가지 조성을 갖는 기체 + 이온성 액체 혼합물의 기포점 압력을 측정함으로써 이온성 액체에서의 기체의 용해도를 결정하였다. 이온성 액체에 대한 $H_2S$의 용해도는 압력이 증가함에 따라 증가하였으며 온도가 증가함에 따라 감소하였다. 반면에 이온성 액체에 대한 $CH_4$의 용해도는 압력이 증가함에 따라 크게 증가하였으나 온도의 영향은 거의 없었다. 동일한 음이온을 갖는 이온성 액체인 [emim][TfO]와 [bmpyr][TfO]에 대하여 $H_2S$의 용해도는 몰랄 농도 기준으로 온도 및 압력 조건에 관계없이 거의 유사하였다. 이온성 액체[emim][TfO]에 대한 $H_2S$$CH_4$의 용해도를 비교한 결과, $H_2S$의 용해도가 $CH_4$의 용해도보다 훨씬 컸다. 동일한 종류의 이온성 액체에 대하여 본 연구를 통해 얻은 $H_2S$$CH_4$의 용해도 데이터를 문헌으로부터 얻은 $CO_2$의 용해도 데이터와 비교하였다. 같은 압력 및 온도 조건에서 비교할 때, $CO_2$의 용해도는 $H_2S$$CH_4$의 용해도의 사이에 있었다.

Keywords

References

  1. Karadas, F., Atilhan, M. and Aparicio, S., "Review on the Use of Ionic Liquids (ILs) as Alternative Fluids for $O_2$ Capture and Natural Gas Sweetening," Energy Fuels, 24, 5817-5828(2010). https://doi.org/10.1021/ef1011337
  2. Mortazavi-Manesh, S., Satyro, M. A. and Marriott, R. A., "Screening Ionic Liquids as Candidates for Separation of Acid Gases: Solubility of Hydrogen Sulfide, Methane, and Ethane," AIChE J., 59(8), 2993-3005(2013). https://doi.org/10.1002/aic.14081
  3. Ramdin, M., Balaji, S. P., Torres-Knoop, A., Dubbeldam, D., de Loos, T. W. and Vlugt, T. J. H., "Solubility of Natural Gas Species in Ionic Liquids and Commercial Solvents: Experiments and Monte Carlo Simulations," J. Chem. Eng. Data, 60, 3039-3045(2015). https://doi.org/10.1021/acs.jced.5b00469
  4. Lee, J. H. and Shim, S.-B., "Analysis of the Gas Feed Distribution at the Gas Sweetening Absorber Using CFD," Korean Chem. Eng. Res., 52(3), 314-320(2014). https://doi.org/10.9713/kcer.2014.52.3.314
  5. D'Alessandro, D. M., Smit, B. and Long, J. R., "Carbon Dioxide Capture: Prospects for New Materials," Angew. Chem., Int. Ed., 49, 6058-6082(2010). https://doi.org/10.1002/anie.201000431
  6. Khakharia, P., Huizinga, A., Jurado Lopez, C., Sanchez, C., de Miguel Mercader, F., Vlugt, T. J. H. and Goetheer, E., "Acid Wash Scrubbing as a Countermeasure for Ammonia Emissions from a Postcombustion $O_2$ Capture Plant," Ind. Eng. Chem. Res., 53, 13195-13204(2014). https://doi.org/10.1021/ie502045c
  7. MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C. S., Williams, C., Shah, N. and Fennell, P., "An Overview of $O_2$ Capture Technologies," Energy Environ. Sci., 3, 1645-1669(2010). https://doi.org/10.1039/c004106h
  8. Lei, Z., Dai, C. and Chen, B., "Gas Solubility in Ionic Liquids," Chem. Rev., 114, 1289-1326(2014). https://doi.org/10.1021/cr300497a
  9. Ramdin, M., de Loos, T. W. and Vlugt, T. J. H., "State-of-the-Art of $O_2$ Capture with Ionic Liquids," Ind. Eng. Chem. Res., 51, 8149-8177(2012). https://doi.org/10.1021/ie3003705
  10. Kim, J. E., Kang, J. W. and Lim, J. S., "Measurement of $O_2$ Solubility in Cyanide Anion Based Ionic Liquids; [$c_4mim$][SCN], [$c_4mim$][$N(CN)_2$], [$c_4mim$][$C(CN)_3$]," Korean J. Chem. Eng., 32(8), 1678-1687(2015). https://doi.org/10.1007/s11814-014-0378-7
  11. Lee, B.-C. and Nam, S.-G., "High-Pressure Solubility of Carbon Dioxide in Pyrrolidinium-Based Ionic Liquids: [bmpyr][dca] and [bmpyr][$Tf_2N$]," Korean J. Chem. Eng., 32(3), 521-533(2015). https://doi.org/10.1007/s11814-014-0364-0
  12. Nam, S.-G. and Lee, B.-C., "Solubility of Carbon Dioxide in Ammonium-Based Ionic Liquids: Butyltrimethylammonium Bis (trifluoromethylsulfonyl)imide and Methyltrioctylammonium Bis (trifluoromethylsulfonyl)imide," Korean J. Chem. Eng., 30(2), 474-481(2013). https://doi.org/10.1007/s11814-012-0178-x
  13. Jin, Y. R., Jung, Y. H., Park, S. J. and Baek, I. H., "Study of $O_2$ Absorption Characteristic and Synthesis of 1-(2-Methoxyethyl)-3-methylimidazolium Methanesulfonate Ionic Liquid," Korean Chem. Eng. Res., 50(1), 35-40(2012). https://doi.org/10.9713/kcer.2012.50.1.035
  14. Cho, M. H., Lee, H. and Kim, H., "$O_2$ Separation Techniques Using Ionic Liquids," Korean Chem. Eng. Res., 48(1), 1-9(2010).
  15. Camper, D., Bara, J., Koval, C. and Noble, R., "Bulk-Fluid Solubility and Membrane Feasibility of Rmim-Based Room-Temperature Ionic Liquids," Ind. Eng. Chem. Res., 45, 6279-6283(2006). https://doi.org/10.1021/ie060177n
  16. Scovazzo, P., "Determination of the Upper Limits, Benchmarks, and Critical Properties for Gas Separations Using Stabilized Room Temperature Ionic Liquid Membranes (SILMs) for the Purpose of Guiding Future Research," J. Membr. Sci., 343, 199-211(2009). https://doi.org/10.1016/j.memsci.2009.07.028
  17. Sumon, K. Z. and Henni, A., "Ionic Liquids for $O_2$ Capture Using COSMO-RS: Effect of Structure, Properties and Molecular Interactions on Solubility and Selectivity," Fluid Phase Equilib., 310, 39-55(2011). https://doi.org/10.1016/j.fluid.2011.06.038
  18. Mortazavi-Manesh, S., Satyro, M. A. and Marriott, R. A., "Screening Ionic Liquids as Candidates for Separation of Acid Gases: Solubility of Hydrogen Sulfide, Methane, and Ethane," AIChE J., 59, 2993-3005(2013). https://doi.org/10.1002/aic.14081
  19. Carvalho, P. J. and Coutinho, J. A. P., "The Polarity Effect upon the Methane Solubility in Ionic Liquids: a Contribution for the Design of Ionic Liquids for Enhanced $O_2$/$CH_4$ and $H_2S$/$CH_4$ Selectivities," Energy Environ. Sci., 4, 4614-4619(2011). https://doi.org/10.1039/c1ee01599k
  20. Ramdin, M., Amplianitis, A., Bazhenov, S., Volkov, A., Volkov, V., Vlugt, T. J. H. and de Loos, T. W., "Solubility of $O_2$ and $CH_4$ in Ionic Liquids: Ideal $O_2$/$CH_4$ Selectivity," Ind. Eng. Chem. Res., 53, 15427-15435(2014). https://doi.org/10.1021/ie4042017
  21. Ramdin, M., Amplianitis, A., de Loos, T. W. and Vlugt, T. J. H., "Solubility of $O_2$/$CH_4$ Gas Mixtures in Ionic Liquids," Fluid Phase Equilib., 375, 134-142(2014). https://doi.org/10.1016/j.fluid.2014.05.007
  22. Heintz, Y. J., Sehabiaue, L., Morsi, B. I., Jones, K. L., Luebke, J. D. and Pennline, H. W., "Hydrogen Sulfide and Carbon Dioxide Removal from Dry Fuel Gas Streams Using an Ionic Liquid as a Physical Solvent," Energy Fuels, 23(15), 4822-4830(2009). https://doi.org/10.1021/ef900281v
  23. Shokouhi, M., Adibi, M., Jalili, A. H., Hosseini-Jenab, M. and Mehdizadeh, A., "Solubility and Diffusion of $H_2S$ and $O_2$ in the Ionic Liquid 1-(2-Hydroxyethyl)-3-methylimidazolium Tetrafluoroborate," J. Chem. Eng. Data, 55(4), 1663-1668(2010). https://doi.org/10.1021/je900716q
  24. Jalili, A. H., Mehdizadeh, A., Shokouhi, M., Ahmadi, A. N., Hosseini-Jenab, M. and Fateminassab, F., "Solubility and Diffusion of $O_2$ and $H_2S$ in the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethylsulfate," J. Chem. Thermodyn., 42(10), 1298-1303(2010). https://doi.org/10.1016/j.jct.2010.05.008
  25. Jalili, A. H., Safavi, M., Ghotbi, C., Mehdizadeh, A., Hosseini-Jenab, M. and Taghikhani, V., "Solubility of $O_2$, $H_2S$, and Their Mixture in the Ionic Liquid 1-Octyl-3-methylimidazolium Bis(trifluoromethyl) sulfonylimide," J. Phys. Chem. B, 116(9), 2758-2774(2012).
  26. Shiflett, M. B., Niehaus, A. M. S. and Yokozeki, A., "Separation of $O_2$ and $H_2S$ Using Room-Temperature Ionic Liquid [bmim] [$MeSO_4$]," J. Chem. Eng. Data, 55(11), 4785-4793(2010). https://doi.org/10.1021/je1004005
  27. Shiflett, M. B. and Yokozeki, A., "Separation of $O_2$ and $H_2S$ Using Room-Temperature Ionic Liquid [bmim][$PF_6$]," Fluid Phase Equilib., 294, 105-113(2010). https://doi.org/10.1016/j.fluid.2010.01.013
  28. Sakhaeinia, H., Jalili, A. H., Taghikhani, V. and Safekordi, A. A., "Solubility of $H_2S$ in Ionic Liquids 1-Ethyl-3-methylimidazolium Hexafluorophosphate ([emim][$PF_6$]) and 1-Ethyl-3-methylimidazolium Bis (trifluoromethyl)sulfonylimide ([emim][$Tf_2N$])," J. Chem. Eng. Data, 55(12), 5839-5845(2010). https://doi.org/10.1021/je100794k
  29. Jalili, A. H., Rahmati-Rostami, M., Ghotbi, C., Hosseini-Jenab, M. and Ahmadi, A. N., "Solubility of $H_2S$ in Ionic Liquids [bmim] [$PF_6$], [bmim][$BF_4$], and [bmim][$Tf_2N$]," J. Chem. Eng. Data, 54(6), 1844-1849(2009). https://doi.org/10.1021/je8009495
  30. Rahmati-Rostami, M., Ghotbi, C., Hosseini-Jenab, M. and Ahmadi, A. N., "Solubility of $H_2S$ in Ionic Liquids [hmim][$PF_6$], [hmim][$BF_4$], and [hmim][$Tf_2N$]," J. Chem. Thermodyn., 41(9), 1052-1055(2009). https://doi.org/10.1016/j.jct.2009.04.014
  31. Sakhaeinia, H., Taghikhani, V., Jalili, A. H., Mehdizadeh, A. and Safekordi, A. A., "Solubility of $H_2S$ in 1-(2-Hydroxyethyl)-3-methylimidazolium Ionic Liquids with Different Anions," Fluid Phase Equilib., 298(2), 303-309(2010). https://doi.org/10.1016/j.fluid.2010.08.027
  32. Kumelan, J., Kamps, A. P., Tuma, D. and Maurer, G., "Solubility of the Single Gases Methane and Xenon in the Ionic Liquid [bmim] [$CH_3SO_4$]," J. Chem. Eng. Data, 52(6), 2319-2324(2007). https://doi.org/10.1021/je700319x
  33. Kumelan, J., Kamps, A. P., Tuma, D. and Maurer, G., "Solubility of the Single Gases Methane and Xenon in the Ionic Liquid [hmim] [$Tf_2N$]," Ind. Eng. Chem. Res., 46(24), 8236-8240(2007). https://doi.org/10.1021/ie070848x
  34. Raeissi, S. and Peters, C. J., "High Pressure Phase Behaviour of Methane in 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl) imide," Fluid Phase Equilib., 294, 67-71(2010). https://doi.org/10.1016/j.fluid.2010.03.021
  35. Shin, E. K., Lee, B.-C. and Lim, J. S., "High-Pressure Solubilities of Carbon Dioxide in Ionic Liquids: 1-Alkyl-3-methylimidazolium Bis (trifluoromethylsulfonyl)-imide," J. Supercrit. Fluids, 45, 282-292(2008). https://doi.org/10.1016/j.supflu.2008.01.020
  36. Jung, Y.-H., Jung, J.-Y., Jin, Y.-R., Lee, B.-C. and Baek, I.-H., "Solubility of Carbon Dioxide in Imidazolium-Based Ionic Liquids with a Methanesulfonate Anion," J. Chem. Eng. Data, 57, 3321-3329(2012). https://doi.org/10.1021/je3001377
  37. Shin, E.-K. and Lee, B.-C., "High-Pressure Phase Behavior of Carbon Dioxide with Ionic Liquids: 1-Alkyl-3-methylimidazolium Trifluoromethanesulfonate," J. Chem. Eng. Data, 53(12), 2728-2734(2008). https://doi.org/10.1021/je8000443
  38. Guide to the Expression of Uncertainty in Measurement, International Organization of Standardization (ISO), Geneva, Switzerland(1995).

Cited by

  1. Poly(ethylene glycol) Dimethyl Ether에 대한 이산화탄소의 용해도 vol.55, pp.2, 2017, https://doi.org/10.9713/kcer.2017.55.2.230