DOI QR코드

DOI QR Code

Flavonoid Glycosides from the Flowers of Pulsatilla koreana Nakai

  • Seo, Kyeong-Hwa (Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Jung, Jae-Woo (Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Nhan, Nguyen Thi (Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Lee, Youn-Hyung (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Baek, Nam-In (Department of Oriental Medicine Biotechnology, Kyung Hee University)
  • Received : 2015.07.20
  • Accepted : 2015.08.17
  • Published : 2016.03.31

Abstract

Extraction and fractionation of Pulsatilla koreana flowers followed by, repeated open column chromatography for EtOAc and n-BuOH fractions yielded four flavonoid glycosides, namely, astragalin (1), tiliroside (2), buddlenoide A (3), and apigenin-7-O-(3"-E-p-coumaroyl)-glucopyranoside (4). The chemical structures of these flavonoid glycosides were elucidated on the basis of various spectroscopic methods including electronic ionization mass spectrometry (EI-MS), 1D NMR ($^1H$, $^{13}C$, DEPT), 2D NMR (gCOSY, gHSQC, gHMBC), and infrared (IR) spectrometry. This study represents the first report of the isolation of the flavonoid glycosides from the flowers of P. koreana.

Keywords

References

  1. Jung, B. S.; Shin, M. K. Hyang Yak Dae Sa Jeon; Young Lim Sa Publisher: Seoul, 2003, p 495.
  2. Kim, Y.; Kim, S. B.; You, Y. J.; Ahn, B. Z. Planta Med. 2002, 68, 271-274. https://doi.org/10.1055/s-2002-23140
  3. Li, W.; Yan, X. T.; Sun, Y. N.; Ngan, T. T.; Shim, S. H.; Kim, Y. H. Biomol. Ther. 2014, 22, 334-340. https://doi.org/10.4062/biomolther.2014.047
  4. Bang, S. C.; Lee, J. H.; Song, G. Y.; Kim, D. H.; Yoon, M. Y.; Ahn, B. Z. Chem. Pharm. Bull. 2005, 53, 1451-1454. https://doi.org/10.1248/cpb.53.1451
  5. Li, W.; Ding, Y.; Sun, Y. N.; Yan, X. T.; Yang, S. Y.; Choi, C. W.; Kim, E. J.; Kang, H. K.; Kim, Y. H. Arch. Pharm. Res. 2013, 36, 768-774. https://doi.org/10.1007/s12272-013-0042-5
  6. Li, W.; Ding, Y.; Sun, Y. N.; Yan, X. T.; Yang, S. Y.; Choi, C. W.; Cha, J. Y.; Lee, Y. M.; Kim, Y. H. Chem. Pharm. Bull. 2013, 61, 471-476. https://doi.org/10.1248/cpb.c12-01034
  7. Cho, S. C.; Sultan, M. Z.; Moon, S. S. Arch. Pharm. Res. 2009, 32, 489-494. https://doi.org/10.1007/s12272-009-1402-z
  8. Cuong, T. D.; Hung, T. M.; Lee, M. K.; Thao, N. T. P.; Jang, H. S.; Min, B. S. Nat. Prod. Sci. 2009, 15, 250-255.
  9. Liu, Q.; Ahn, J. H.; Kim, S. B.; Hwang, B. Y.; Lee, M. K. Planta Med. 2012, 78, 1783-1786. https://doi.org/10.1055/s-0032-1315368
  10. Gronquist, M.; Bezzerides, A.; Attygalle, A.; Meinwald, J.; Eisner, M.; Eisner, T. Proc. Natl. Acad. Sci. USA 2001, 98, 13745-13750. https://doi.org/10.1073/pnas.231471698
  11. Moon, M. Y.; Baik, J. S.; Kim, S. S.; Jang, W. J.; Kim, M. S.; Lee, N. H. J. Soc. Cosmet. Sci. Korea 2009, 35, 251-256.
  12. Oshima, Y.; Nakabayashi, T. Nippon Nogei Kagaku Kaishi J. 1953, 27, 756-759.
  13. Horhammer, L.; Stich, L.; Wagner, H. Naturwissenschaften J. 1959, 46, 358.
  14. Kubo, I.; Yokokawa, Y. Phytochemistry 1992, 31, 1075-1077. https://doi.org/10.1016/0031-9422(92)80230-C
  15. Subramani, K.; Karnan, R.; Sajitha, M.; Anbarasan, P. M. Indian J. 2013, 7, 102-106.
  16. Yoo, N. H.; Jang, D. S.; Yoo, J. L.; Lee, Y. M.; Kim, Y. S.; Cho, J. H.; Kim, J. S. J. Nat. Prod. 2008, 71, 713-715. https://doi.org/10.1021/np070489a
  17. Jeong, H. J.; Ryu, Y. B.; Park, S. J.; Kim, J. H.; Kwon, H. J.; Kim, J. H.; Park, K. H.; Rho, M. C.; Lee, W. S. Bioorg. Med. Chem. 2009, 17, 6816-6823. https://doi.org/10.1016/j.bmc.2009.08.036
  18. Luyen, B. T. T.; Tai, B. H.; Thao, N. P.; Kim, J. E.; Cha, J. Y.; Xin, M. J.; Lee, Y. M.; Kim, Y. H. Bioorg. Med. Chem. Lett. 2014, 24, 1895-1900. https://doi.org/10.1016/j.bmcl.2014.03.014
  19. Tsukamoto, S.; Tomise, K.; Aburatani, M.; Onuki, H.; Hirorta, H.; Ishiharajima, E.; Ohta, T. J. Nat. Prod. 2004, 67, 1839-1841. https://doi.org/10.1021/np0400104
  20. Itoh, T.; Ninomiya, M.; Yasuda, M.; Koshikawa, K.; Deyashiki, Y.; Nozawa, Y.; Akao, Y.; Koketsu, M. Bioorg. Med. Chem. 2009, 17, 5374-5379. https://doi.org/10.1016/j.bmc.2009.06.050
  21. Qin, N.; Li, C. B.; Jin, M. N.; Shi, L. H.; Duan, H. Q.; Niu, W. Y. Eur. J. Med. Chem. 2011, 46, 5189-5195. https://doi.org/10.1016/j.ejmech.2011.07.059
  22. Kubo, I.; Yokokawa, Y.; Kinst-Hori, I. J. Nat. Prod. 1995, 58, 739-743. https://doi.org/10.1021/np50119a013
  23. Argyropoulou, A.; Samara, P.; Tsitsilonis, O.; Skaltsa, H. Phytother. Res. 2012, 26, 1800-1806. https://doi.org/10.1002/ptr.4654

Cited by

  1. Anti-acetylcholinesterase activity of the aglycones of phenolic glycosides isolated from Leonurus japonicus vol.7, pp.10, 2016, https://doi.org/10.1016/j.apjtb.2017.08.013
  2. Chemical constituents of Dicentra spectabilis and their anti-inflammation effect vol.61, pp.1, 2018, https://doi.org/10.3839/jabc.2018.006
  3. Identification of the active components inhibiting the expression of matrix metallopeptidase-9 by TNFα in ethyl acetate extract of Euphorbia humifusa Willd vol.62, pp.4, 2016, https://doi.org/10.3839/jabc.2019.051
  4. Megastigmane Derivatives from the Cladodes of Opuntia humifusa and Their Nitric Oxide Inhibitory Activities in Macrophages vol.83, pp.3, 2020, https://doi.org/10.1021/acs.jnatprod.9b01120
  5. Metabolite Profiling of Rambutan ( Nephelium lappaceum L.) Seeds Using UPLC-qTOF-MS/MS and Senomorphic Effects in Aged Human Dermal Fibroblasts vol.12, pp.5, 2020, https://doi.org/10.3390/nu12051430
  6. New phenolic compounds from Calothamnus quadrifidus R.Br. aerial parts and their antioxidant activity vol.35, pp.23, 2016, https://doi.org/10.1080/14786419.2020.1789982