DOI QR코드

DOI QR Code

The pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon

  • Saghi, Hassan (Department of Civil Engineering, Hakim Sabzevar University)
  • 투고 : 2015.08.03
  • 심사 : 2015.12.11
  • 발행 : 2016.03.31

초록

Sloshing phenomenon is a complicated free surface flow problem that increases the dynamic pressure on the sidewalls and the bottom of the storage tanks. When the storage tanks are partially filled, it is essential to be able to evaluate the fluid dynamic loads on the tank's perimeter. In this paper, a numerical code was developed to determine the pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon. Assuming the fluid to be inviscid, the Laplace equation and the nonlinear free surface boundary conditions were solved using coupled boundary element - finite element method. The code performance for sloshing modeling was validated using Nakayama and Washizu's results. Finally, this code was used for partially filled rectangular and trapezoidal storage tanks and free surface displacement, pressure distribution and horizontal and vertical forces exerted on the tanks' perimeters due to liquid sloshing phenomenon were estimated and discussed.

키워드

참고문헌

  1. Akyildiz, H., Unal, N.E., 2005. Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing. Ocean Eng. 32 (11), 1503-1516. https://doi.org/10.1016/j.oceaneng.2004.11.006
  2. Akyildiz, H., Unal, N.E., 2006. Sloshing in a three-dimensional rectangular tank: numerical simulation and experimental validation. Ocean Eng. 33 (16), 2135-2149. https://doi.org/10.1016/j.oceaneng.2005.11.001
  3. Belakroum, R., Kadja, M., Mai, T.H., Maalouf, C., 2010. An efficient passive technique for reducing sloshing in rectangular tanks partially filled with liquid. Mech. Res. Commun. 37 (3), 341-346. https://doi.org/10.1016/j.mechrescom.2010.02.003
  4. Celebi, M.S., Akyildiz, H., 2002. Nonlinear modeling of liquid sloshing in moving rectangular tank. Ocean Eng. 29 (12), 1527-1553. https://doi.org/10.1016/S0029-8018(01)00085-3
  5. Chen, B.F., Chiang, H.W., 2000. Complete two-dimensional analysis of sea-wave-induced fully non-linear sloshing fluid in a rigid floating tank. Ocean Eng. 27 (9), 953-977. https://doi.org/10.1016/S0029-8018(99)00036-0
  6. Chen, B.F., Nokes, R., 2005. Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank. J. Comput. Phys. 209 (1), 47-81. https://doi.org/10.1016/j.jcp.2005.03.006
  7. Chen, Y.W., Yeih,W.C., Liu, C.H., Chang, J.R., 2012. Numerical simulation of the two-dimensional sloshing problem using a multi-scaling Trefftz method. Eng. Anal. Bound. Elem. 36 (1), 9-29. https://doi.org/10.1016/j.enganabound.2011.07.009
  8. Choun, Y.S., Yun, C.B., 1996. Sloshing characteristics in rectangular tanks with a submerged block. Comput. Struct. 61 (3), 401-413. https://doi.org/10.1016/0045-7949(96)00084-3
  9. Curadelli, O., Ambrosini, D., Mirasso, A., Amani, M., 2010. Resonant frequencies in an elevated spherical container partially filled with water: FEM and measurement. J. Fluids Struct. 26 (1), 148-159. https://doi.org/10.1016/j.jfluidstructs.2009.10.002
  10. De Chowdhury, S., Sannasiraj, S.A., 2014. Numerical simulation of 2D sloshing waves using SPH with diffusive terms. Appl. Ocean Res. 47, 219-240. https://doi.org/10.1016/j.apor.2014.06.004
  11. Frandsen, J.B., 2004. Sloshing motions in excited tanks. J. Comput. Phys. 196 (1), 53-87. https://doi.org/10.1016/j.jcp.2003.10.031
  12. Gavrilyuk, I.P., Lukovsky, I.A., Timokha, A.N., 2005. Linear and nonlinear sloshing in a circular conical tank. Fluid Dyn. Res. 37 (6), 399-429. https://doi.org/10.1016/j.fluiddyn.2005.08.004
  13. Gomez-Goni, J., Garrido-Mendoza, C.A., Cercos, J.L., Gonzalez, L., 2013. Two phase analysis of sloshing in a rectangular container with Volume of Fluid (VOF) methods. Ocean Eng. 73, 208-212. https://doi.org/10.1016/j.oceaneng.2013.07.005
  14. Hasheminejad, S.M., Aghabeigi, M., 2012. Sloshing characteristics in half-full horizontal elliptical tanks with vertical baffles. Appl. Math. Model. 36 (1), 57-71. https://doi.org/10.1016/j.apm.2011.02.026
  15. Huang, S., Duan, W.Y., Zhu, X., 2010. Time-domain simulation of tank sloshing pressure and experimental validation. J. Hydrodyn. Ser. B 22 (5), 556-563. https://doi.org/10.1016/S1001-6058(09)60252-3
  16. Jing Li, H.L., Zhen Chen, Z.Z., 2014. Numerical studies on sloshing in rectangular tanks using a tree-based adaptive solver and experimental validation. Ocean Eng. 82, 20-31. https://doi.org/10.1016/j.oceaneng.2014.02.011
  17. Jung, J.H., Yoon, H.S., Lee, C.Y., Shin, S.C., 2012. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank. Ocean Eng. 44, 79-89. https://doi.org/10.1016/j.oceaneng.2012.01.034
  18. Jung, J.H., Yoon, H.S., Lee, C.Y., 2015. Effect of natural frequency modes on sloshing phenomenon in a rectangular tank. Int. J. Nav. Archit. Ocean Eng. 7 (3), 580-594. https://doi.org/10.1515/ijnaoe-2015-0041
  19. Karamanos, S.A., Patkas, L.A., Platyrrachos, M.A., 2005. Sloshing effects on the seismic design of horizontal-cylindrical and spherical industrial vessels. J. Press. Vessel Technol. 128 (3), 328-340.
  20. Ketabdari, M.J., Saghi, H., 2013. Parametric study for optimization of storage tanks considering sloshing phenomenon using coupled BEMeFEM. Appl. Math. Comput. 224, 123-139.
  21. Ketabdari, M.J., Saghi, H., 2013. Numerical study on behaviour of the trapezoidal storage tank due to liquid sloshing impact. Int. J. Comput. Methods 10 (6), 1-22.
  22. Ketabdari, M.J., Saghi, H., 2013. A new arrangement with nonlinear sidewalls for tanker ship storage panels. J. Ocean Univ. China 12 (1), 23-31. https://doi.org/10.1007/s11802-013-1925-2
  23. Ketabdari, M.J., Saghi, H., Rezaei, H., Rezanejad, K., 2015. Optimization of linear and nonlinear sidewall storage units coupled boundary element-finite element methods. KSCE J. Civ. Eng. 19 (4), 805-813. https://doi.org/10.1007/s12205-011-0396-5
  24. Kim, Y., 2013. Rapid response calculation of LNG cargo containment system under sloshing load using wavelet transformation. Int. J. Nav. Archit. Ocean Eng. 5 (2), 227-245. https://doi.org/10.2478/IJNAOE-2013-0129
  25. Lee, S.J., Kim, M.H., Lee, D.H., Kim, J.W., Kim, Y.H., 2007. The effects of LNG- tank sloshing on the global motions of LNG carriers. Ocean Eng. 34 (1), 10-20. https://doi.org/10.1016/j.oceaneng.2006.02.007
  26. Lee, D.H., Kim, M.H., Kwon, S.H., Kim, J.W., Lee, Y.B., 2007. A parametric sensitivity study on LNG tank sloshing loads by numerical simulations. Ocean Eng. 34 (1), 3-9. https://doi.org/10.1016/j.oceaneng.2006.03.014
  27. Lee, C.S., Cho, J.R., Kim, W.S., Noh, B.J., Kim, M.H., Lee, J.M., 2013. Evaluation of sloshing resistance performance for LNG carrier insulation system based on fluid-structure interaction analysis. Int. J. Nav. Archit. Ocean Eng. 5 (1), 1-20. https://doi.org/10.2478/IJNAOE-2013-0114
  28. Liu, D., Lin, P., 2008. A numerical study of three-dimensional liquid sloshing in tanks. J. Comput. Phys. 227 (8), 3921-3939. https://doi.org/10.1016/j.jcp.2007.12.006
  29. Liu, D., Lin, P., 2009. Three-dimensional liquid sloshing in a tank with baffles. Ocean Eng. 36 (2), 202-212. https://doi.org/10.1016/j.oceaneng.2008.10.004
  30. Lu, L., Jiang, S.C., Zhao, M., Tang, G., 2015. Two-dimensional viscous numerical simulation of liquid sloshing in rectangular tank with/without baffles and comparison with potential flow solutions. Ocean Eng. 108, 662-677. https://doi.org/10.1016/j.oceaneng.2015.08.060
  31. Mciver, P., 1989. Sloshing frequencies for cylindrical and spherical containers filled to an arbitrary depth. J. Fluid Mech. 201, 243-257. https://doi.org/10.1017/S0022112089000923
  32. Ming, P.J., Duan, W.Y., 2010. Numerical simulation of sloshing in rectangular tank with VOF based on unstructured grids. J. Hydrodyn. Ser. B 22 (6), 856-864. https://doi.org/10.1016/S1001-6058(09)60126-8
  33. Nakayama, T., Washizu, K., 1984. In: Bauerjee, P.K., Mukherjee, S. (Eds.), Boundary Element Analysis of Nonlinear Sloshing Problems. Published in Developments in Boundary Element Method-3. Elsevier Applied Science Publishers, Newyork.
  34. Panigrahy, P.K., Saha, U.K., Maity, D., 2009. Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks. Ocean Eng. 36 (3-4), 213-222. https://doi.org/10.1016/j.oceaneng.2008.11.002
  35. Papaspyrou, S., Valougeorgis, D., Karamanos, S.A., 2003. Refined solution of externally induced sloshing in half-full spherical containers. J. Eng. Mech. 129 (12), 1369-1379. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1369)
  36. Papaspyrou, S., Karamanos, S.A., Valougeorgis, D., 2004. Response of half-full horizontal cylinders under transverse excitation. J. Fluids Struct. 19 (7), 985-1003. https://doi.org/10.1016/j.jfluidstructs.2004.04.014
  37. Patkas, L.A., Karamanos, S.A., 2007. Variational solutions of externally-induced sloshing in horizontal-cylindrical and spherical vessels. J. Eng. Mech. 133 (6), 641-655. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:6(641)
  38. Pirker, S., Aigner, A., Wimmer, G., 2012. Experimental and numerical investigation of sloshing resonance phenomena in a spring-mounted rectangular tank. Chem. Eng. Sci. 68 (1), 143-150. https://doi.org/10.1016/j.ces.2011.09.021
  39. Saghi, H., Ketabdari, M.J., 2012. Numerical simulation of sloshing in rectangular storage tank using coupled FEM-BEM. J. Mar. Sci. Appl. 11 (4), 417-426. https://doi.org/10.1007/s11804-012-1151-0
  40. Shekari, M.R., Khaji, N., Ahmadi, M.T., 2009. A couple BE-FE study for evaluation of seismically isolated cylindrical liquid storage tanks considering fluid-structure interaction. J. Fluids Struct. 25, 567-585. https://doi.org/10.1016/j.jfluidstructs.2008.07.005
  41. Wiesche, S.A.D., 2008. Sloshing dynamics of a viscous liquid in a spinning horizontal cylindrical tank. Aerosp. Sci. Technol. 12 (6), 448-456. https://doi.org/10.1016/j.ast.2007.10.013
  42. Wu, G.X., 2007. Second-order resonance of sloshing in a tank. Ocean Eng. 34 (17-18), 2345-2349. https://doi.org/10.1016/j.oceaneng.2007.05.004
  43. Wu, C.H., Faltinsen, O.M., Chen, B.F., 2012. Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method. Comput. Fluids 63, 9-26. https://doi.org/10.1016/j.compfluid.2012.02.018
  44. Yue, B.Z., 2008. Nonlinear coupling dynamics of liquid filled spherical container in microgravity. Appl. Math. Mech. 29, 1085-1092. https://doi.org/10.1007/s10483-008-0812-y
  45. Zhang, C., 2015. Analysis of liquid sloshing in LNG carrier with wedge-shaped tanks. Ocean Eng. 105, 304-317. https://doi.org/10.1016/j.oceaneng.2015.06.044
  46. Zhang, C., 2015. Application of an improved semi-Lagrangian procedure to fully-nonlinear simulation of sloshing in non-wall-sided tanks. Appl. Ocean Res. 51, 74-92. https://doi.org/10.1016/j.apor.2015.03.001
  47. Zhang, C., Li, Y., Meng, Q., 2015. Fully nonlinear analysis of second-order sloshing resonance in a three-dimensional tank. Comput. Fluids 116, 88-104. https://doi.org/10.1016/j.compfluid.2015.04.016
  48. Zhao, Y., Chen, H.C., 2015. Numerical simulation of 3D sloshing flow in partially filled LNG tank using a coupled level-set and volume-of-fluid method. Ocean Eng. 104, 10-30. https://doi.org/10.1016/j.oceaneng.2015.04.083
  49. Zou, C.F., Wang, D.Y., Cai, Z.H., 2015. Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics. Int. J. Nav. Archit. Ocean Eng. 7 (4), 670-690. https://doi.org/10.1515/ijnaoe-2015-0047

피인용 문헌

  1. Optimization of the rectangular storage tanks for the sloshing phenomena based on the entropy generation minimization vol.128, pp.None, 2016, https://doi.org/10.1016/j.energy.2017.04.075
  2. Review of seismic studies of liquid storage tanks vol.65, pp.5, 2016, https://doi.org/10.12989/sem.2018.65.5.557
  3. Effects of using obstacles on the dam-break flow based on entropy generation analysis vol.134, pp.5, 2016, https://doi.org/10.1140/epjp/i2019-12592-3
  4. A parametric study on wave-floating storage tank interaction using coupled VOF-FDM method vol.24, pp.2, 2016, https://doi.org/10.1007/s00773-018-0564-0
  5. DOE study of ‘the effect of various parameters on fuel tank sloshing using multiphase CFD’ vol.42, pp.1, 2016, https://doi.org/10.1080/01430750.2018.1451383
  6. The influence of obliquely perforated dual-baffles on sway induced tank sloshing dynamics vol.235, pp.4, 2016, https://doi.org/10.1177/1475090220961920