참고문헌
- Akyildiz, H., Unal, N.E., 2005. Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing. Ocean Eng. 32 (11), 1503-1516. https://doi.org/10.1016/j.oceaneng.2004.11.006
- Akyildiz, H., Unal, N.E., 2006. Sloshing in a three-dimensional rectangular tank: numerical simulation and experimental validation. Ocean Eng. 33 (16), 2135-2149. https://doi.org/10.1016/j.oceaneng.2005.11.001
- Belakroum, R., Kadja, M., Mai, T.H., Maalouf, C., 2010. An efficient passive technique for reducing sloshing in rectangular tanks partially filled with liquid. Mech. Res. Commun. 37 (3), 341-346. https://doi.org/10.1016/j.mechrescom.2010.02.003
- Celebi, M.S., Akyildiz, H., 2002. Nonlinear modeling of liquid sloshing in moving rectangular tank. Ocean Eng. 29 (12), 1527-1553. https://doi.org/10.1016/S0029-8018(01)00085-3
- Chen, B.F., Chiang, H.W., 2000. Complete two-dimensional analysis of sea-wave-induced fully non-linear sloshing fluid in a rigid floating tank. Ocean Eng. 27 (9), 953-977. https://doi.org/10.1016/S0029-8018(99)00036-0
- Chen, B.F., Nokes, R., 2005. Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank. J. Comput. Phys. 209 (1), 47-81. https://doi.org/10.1016/j.jcp.2005.03.006
- Chen, Y.W., Yeih,W.C., Liu, C.H., Chang, J.R., 2012. Numerical simulation of the two-dimensional sloshing problem using a multi-scaling Trefftz method. Eng. Anal. Bound. Elem. 36 (1), 9-29. https://doi.org/10.1016/j.enganabound.2011.07.009
- Choun, Y.S., Yun, C.B., 1996. Sloshing characteristics in rectangular tanks with a submerged block. Comput. Struct. 61 (3), 401-413. https://doi.org/10.1016/0045-7949(96)00084-3
- Curadelli, O., Ambrosini, D., Mirasso, A., Amani, M., 2010. Resonant frequencies in an elevated spherical container partially filled with water: FEM and measurement. J. Fluids Struct. 26 (1), 148-159. https://doi.org/10.1016/j.jfluidstructs.2009.10.002
- De Chowdhury, S., Sannasiraj, S.A., 2014. Numerical simulation of 2D sloshing waves using SPH with diffusive terms. Appl. Ocean Res. 47, 219-240. https://doi.org/10.1016/j.apor.2014.06.004
- Frandsen, J.B., 2004. Sloshing motions in excited tanks. J. Comput. Phys. 196 (1), 53-87. https://doi.org/10.1016/j.jcp.2003.10.031
- Gavrilyuk, I.P., Lukovsky, I.A., Timokha, A.N., 2005. Linear and nonlinear sloshing in a circular conical tank. Fluid Dyn. Res. 37 (6), 399-429. https://doi.org/10.1016/j.fluiddyn.2005.08.004
- Gomez-Goni, J., Garrido-Mendoza, C.A., Cercos, J.L., Gonzalez, L., 2013. Two phase analysis of sloshing in a rectangular container with Volume of Fluid (VOF) methods. Ocean Eng. 73, 208-212. https://doi.org/10.1016/j.oceaneng.2013.07.005
- Hasheminejad, S.M., Aghabeigi, M., 2012. Sloshing characteristics in half-full horizontal elliptical tanks with vertical baffles. Appl. Math. Model. 36 (1), 57-71. https://doi.org/10.1016/j.apm.2011.02.026
- Huang, S., Duan, W.Y., Zhu, X., 2010. Time-domain simulation of tank sloshing pressure and experimental validation. J. Hydrodyn. Ser. B 22 (5), 556-563. https://doi.org/10.1016/S1001-6058(09)60252-3
- Jing Li, H.L., Zhen Chen, Z.Z., 2014. Numerical studies on sloshing in rectangular tanks using a tree-based adaptive solver and experimental validation. Ocean Eng. 82, 20-31. https://doi.org/10.1016/j.oceaneng.2014.02.011
- Jung, J.H., Yoon, H.S., Lee, C.Y., Shin, S.C., 2012. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank. Ocean Eng. 44, 79-89. https://doi.org/10.1016/j.oceaneng.2012.01.034
- Jung, J.H., Yoon, H.S., Lee, C.Y., 2015. Effect of natural frequency modes on sloshing phenomenon in a rectangular tank. Int. J. Nav. Archit. Ocean Eng. 7 (3), 580-594. https://doi.org/10.1515/ijnaoe-2015-0041
- Karamanos, S.A., Patkas, L.A., Platyrrachos, M.A., 2005. Sloshing effects on the seismic design of horizontal-cylindrical and spherical industrial vessels. J. Press. Vessel Technol. 128 (3), 328-340.
- Ketabdari, M.J., Saghi, H., 2013. Parametric study for optimization of storage tanks considering sloshing phenomenon using coupled BEMeFEM. Appl. Math. Comput. 224, 123-139.
- Ketabdari, M.J., Saghi, H., 2013. Numerical study on behaviour of the trapezoidal storage tank due to liquid sloshing impact. Int. J. Comput. Methods 10 (6), 1-22.
- Ketabdari, M.J., Saghi, H., 2013. A new arrangement with nonlinear sidewalls for tanker ship storage panels. J. Ocean Univ. China 12 (1), 23-31. https://doi.org/10.1007/s11802-013-1925-2
- Ketabdari, M.J., Saghi, H., Rezaei, H., Rezanejad, K., 2015. Optimization of linear and nonlinear sidewall storage units coupled boundary element-finite element methods. KSCE J. Civ. Eng. 19 (4), 805-813. https://doi.org/10.1007/s12205-011-0396-5
- Kim, Y., 2013. Rapid response calculation of LNG cargo containment system under sloshing load using wavelet transformation. Int. J. Nav. Archit. Ocean Eng. 5 (2), 227-245. https://doi.org/10.2478/IJNAOE-2013-0129
- Lee, S.J., Kim, M.H., Lee, D.H., Kim, J.W., Kim, Y.H., 2007. The effects of LNG- tank sloshing on the global motions of LNG carriers. Ocean Eng. 34 (1), 10-20. https://doi.org/10.1016/j.oceaneng.2006.02.007
- Lee, D.H., Kim, M.H., Kwon, S.H., Kim, J.W., Lee, Y.B., 2007. A parametric sensitivity study on LNG tank sloshing loads by numerical simulations. Ocean Eng. 34 (1), 3-9. https://doi.org/10.1016/j.oceaneng.2006.03.014
- Lee, C.S., Cho, J.R., Kim, W.S., Noh, B.J., Kim, M.H., Lee, J.M., 2013. Evaluation of sloshing resistance performance for LNG carrier insulation system based on fluid-structure interaction analysis. Int. J. Nav. Archit. Ocean Eng. 5 (1), 1-20. https://doi.org/10.2478/IJNAOE-2013-0114
- Liu, D., Lin, P., 2008. A numerical study of three-dimensional liquid sloshing in tanks. J. Comput. Phys. 227 (8), 3921-3939. https://doi.org/10.1016/j.jcp.2007.12.006
- Liu, D., Lin, P., 2009. Three-dimensional liquid sloshing in a tank with baffles. Ocean Eng. 36 (2), 202-212. https://doi.org/10.1016/j.oceaneng.2008.10.004
- Lu, L., Jiang, S.C., Zhao, M., Tang, G., 2015. Two-dimensional viscous numerical simulation of liquid sloshing in rectangular tank with/without baffles and comparison with potential flow solutions. Ocean Eng. 108, 662-677. https://doi.org/10.1016/j.oceaneng.2015.08.060
- Mciver, P., 1989. Sloshing frequencies for cylindrical and spherical containers filled to an arbitrary depth. J. Fluid Mech. 201, 243-257. https://doi.org/10.1017/S0022112089000923
- Ming, P.J., Duan, W.Y., 2010. Numerical simulation of sloshing in rectangular tank with VOF based on unstructured grids. J. Hydrodyn. Ser. B 22 (6), 856-864. https://doi.org/10.1016/S1001-6058(09)60126-8
- Nakayama, T., Washizu, K., 1984. In: Bauerjee, P.K., Mukherjee, S. (Eds.), Boundary Element Analysis of Nonlinear Sloshing Problems. Published in Developments in Boundary Element Method-3. Elsevier Applied Science Publishers, Newyork.
- Panigrahy, P.K., Saha, U.K., Maity, D., 2009. Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks. Ocean Eng. 36 (3-4), 213-222. https://doi.org/10.1016/j.oceaneng.2008.11.002
- Papaspyrou, S., Valougeorgis, D., Karamanos, S.A., 2003. Refined solution of externally induced sloshing in half-full spherical containers. J. Eng. Mech. 129 (12), 1369-1379. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1369)
- Papaspyrou, S., Karamanos, S.A., Valougeorgis, D., 2004. Response of half-full horizontal cylinders under transverse excitation. J. Fluids Struct. 19 (7), 985-1003. https://doi.org/10.1016/j.jfluidstructs.2004.04.014
- Patkas, L.A., Karamanos, S.A., 2007. Variational solutions of externally-induced sloshing in horizontal-cylindrical and spherical vessels. J. Eng. Mech. 133 (6), 641-655. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:6(641)
- Pirker, S., Aigner, A., Wimmer, G., 2012. Experimental and numerical investigation of sloshing resonance phenomena in a spring-mounted rectangular tank. Chem. Eng. Sci. 68 (1), 143-150. https://doi.org/10.1016/j.ces.2011.09.021
- Saghi, H., Ketabdari, M.J., 2012. Numerical simulation of sloshing in rectangular storage tank using coupled FEM-BEM. J. Mar. Sci. Appl. 11 (4), 417-426. https://doi.org/10.1007/s11804-012-1151-0
- Shekari, M.R., Khaji, N., Ahmadi, M.T., 2009. A couple BE-FE study for evaluation of seismically isolated cylindrical liquid storage tanks considering fluid-structure interaction. J. Fluids Struct. 25, 567-585. https://doi.org/10.1016/j.jfluidstructs.2008.07.005
- Wiesche, S.A.D., 2008. Sloshing dynamics of a viscous liquid in a spinning horizontal cylindrical tank. Aerosp. Sci. Technol. 12 (6), 448-456. https://doi.org/10.1016/j.ast.2007.10.013
- Wu, G.X., 2007. Second-order resonance of sloshing in a tank. Ocean Eng. 34 (17-18), 2345-2349. https://doi.org/10.1016/j.oceaneng.2007.05.004
- Wu, C.H., Faltinsen, O.M., Chen, B.F., 2012. Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method. Comput. Fluids 63, 9-26. https://doi.org/10.1016/j.compfluid.2012.02.018
- Yue, B.Z., 2008. Nonlinear coupling dynamics of liquid filled spherical container in microgravity. Appl. Math. Mech. 29, 1085-1092. https://doi.org/10.1007/s10483-008-0812-y
- Zhang, C., 2015. Analysis of liquid sloshing in LNG carrier with wedge-shaped tanks. Ocean Eng. 105, 304-317. https://doi.org/10.1016/j.oceaneng.2015.06.044
- Zhang, C., 2015. Application of an improved semi-Lagrangian procedure to fully-nonlinear simulation of sloshing in non-wall-sided tanks. Appl. Ocean Res. 51, 74-92. https://doi.org/10.1016/j.apor.2015.03.001
- Zhang, C., Li, Y., Meng, Q., 2015. Fully nonlinear analysis of second-order sloshing resonance in a three-dimensional tank. Comput. Fluids 116, 88-104. https://doi.org/10.1016/j.compfluid.2015.04.016
- Zhao, Y., Chen, H.C., 2015. Numerical simulation of 3D sloshing flow in partially filled LNG tank using a coupled level-set and volume-of-fluid method. Ocean Eng. 104, 10-30. https://doi.org/10.1016/j.oceaneng.2015.04.083
- Zou, C.F., Wang, D.Y., Cai, Z.H., 2015. Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics. Int. J. Nav. Archit. Ocean Eng. 7 (4), 670-690. https://doi.org/10.1515/ijnaoe-2015-0047
피인용 문헌
- Optimization of the rectangular storage tanks for the sloshing phenomena based on the entropy generation minimization vol.128, pp.None, 2016, https://doi.org/10.1016/j.energy.2017.04.075
- Review of seismic studies of liquid storage tanks vol.65, pp.5, 2016, https://doi.org/10.12989/sem.2018.65.5.557
- Effects of using obstacles on the dam-break flow based on entropy generation analysis vol.134, pp.5, 2016, https://doi.org/10.1140/epjp/i2019-12592-3
- A parametric study on wave-floating storage tank interaction using coupled VOF-FDM method vol.24, pp.2, 2016, https://doi.org/10.1007/s00773-018-0564-0
- DOE study of ‘the effect of various parameters on fuel tank sloshing using multiphase CFD’ vol.42, pp.1, 2016, https://doi.org/10.1080/01430750.2018.1451383
- The influence of obliquely perforated dual-baffles on sway induced tank sloshing dynamics vol.235, pp.4, 2016, https://doi.org/10.1177/1475090220961920