DOI QR코드

DOI QR Code

Biological Control of Large Patch Disease by Streptomyces spp. in Turfgrass

스트렙토마이세스를 이용한 잔디 갈색퍼짐병의 생물적 방제

  • Jeon, Chang Wook (Division of Life Science, Gyeongsang National University) ;
  • Lee, Jung Han (Korea Turfgrass Research Institute) ;
  • Min, Gyu Young (Daejung Golf Engineering Co. Ltd.) ;
  • Kwak, Youn-Sig (Department of Plant Medicine and Institute of Agriculture & Life Science, Gyeongsang National University)
  • Received : 2015.12.30
  • Accepted : 2016.02.03
  • Published : 2016.03.31

Abstract

Large patch disease in Zoysia japonica Steud. is the most destructive disease in turfgrass. For large patch management, it has been dependent on chemical controls but pesticides are harmful to soil, water and biodiversity. In this study, we evaluated 4 Streptomyces spp. strains (S2, S5, S8 and S12) which were selected in previous studies using metagenome approaches. Root colonization of the strains, large patch suppressing effect and the pathogen density change in actual golf course were investigated to evaluate biological control potential of the strains. All strains exhibited reliable root colonization ability that strains populations were higher than $6log\;cfu\;g^{-1}$ in turfgrass rhizosphere. The pathogen density, with S8 treatment, was detected average of 0.7 after a week and average of 1.2 after 4 weeks. Disease control and suppressive the pathogen population by S8 strain showed higher efficiency than other strains. S8 was applied in an actual golf course for the large patch control and pathogen density. The pathogen density in S8 treatment plot was detected below 1.6 per toothpick and lower compared with untreated plot. The results indicated that pathogen density was suppressed by S8 and the stain has great potential as a biological control agent for the large patch.

갈색퍼짐병은 한국잔디(Korean lawngrass)에 발병하는 병으로 골프장이나 재배지에서 심각하게 발생하는 것으로 알려져 있다. 갈색퍼짐병 방제를 위하여 주로 화학적 방제에 의존하고 있으며 이는 토양, 수질, 생물다양성에 문제를 일으킬 수 있다. 이에 따라 본 연구는 갈색퍼짐병 방제를 위하여 선발된 균주를 이용하여 균주의 근권정착 능력, 갈색퍼짐병 병원균 억제효과와 실제 골프장에 적용하여 병원균 밀도변화를 조사하였다. 실험실 내부에서 근권 정착력 평가를 통하여 선발된 S2, 5, 8과 12 균주의 근권정착 능력을 조사한 결과 4주차까지 $6log\;cfu\;g^{-1}$ 이상으로 생물적 방제 인자의 필수조건이라 할 수 있는 근권정착 능력이 우수한 것으로 나타났다. S2, 5, 8과 12 균주를 처리하여 병원균 밀도를 조사한 결과 S8 균주의 경우 1주차에 평균 0.7에서 4주차에는 1.2로 병원균 밀도 억제효과가 가장 좋은 것으로 나타났으며 갈색퍼짐병 방제효과 또한 S8 균주가 가장 우수한 것으로 나타났다. 갈색퍼짐병 방제효과가 가장 뛰어난 S8 균주를 이용하여 실제 골프장에서 갈색퍼짐병 병원균의 밀도 억제효과를 조사한 결과 S8 균주 처리구는 무처리구에 비하여 병원균의 밀도가 이쑤시개당 1.6 이상 낮게 검출되었으며 S8 균주 처리에 의하여 병원균 밀도 감소한 것으로 판단할 수 있다.

Keywords

References

  1. Berdy, J. 2005. Bioactive microbial metabolites: A personal view. J. Antibiot. 58:1-26. https://doi.org/10.1038/ja.2005.1
  2. Bull, C.T., Weller, D.M. and Thomashow, L.S. 1991. Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas uorescens strain 2-79. Phytopathology 81:954-959. https://doi.org/10.1094/Phyto-81-954
  3. Burr, T.J. and Caesar, A. 1984. Beneficial plant bacteria. CRC Crit. Rev. Plant Sci. 2:1-20. https://doi.org/10.1080/07352688409382186
  4. Cao, L., Qiu, Z., Da , X., Tan, H., Lin, Y. et al. 2004. Isolation of endophytic actinobacteria from roots and leaves of banana (Musa acuminata) plants and their activities against Fusarium oxysporum f. sp. cubense. World J. Microbiol. Biotechnol. 20:501-504. https://doi.org/10.1023/B:WIBI.0000040406.30495.48
  5. Chang, T.H., Ru, Y.J. and Lee, Y.S. 2007. Soil mineral nutrients and microbes are responsible for large patch disease caused by Rhizoctonia solani AG2-2 in zoysiagrass turf. Kor. Turfgrass Sci. 21:113-126. (In Korean)
  6. Graham, J., Marshall, B. and Squire, G. 2003. Genetic differentiation over a spatial environmental gradient in wild Rubus idaeus populations. New Phytol. 157:667-675. https://doi.org/10.1046/j.1469-8137.2003.00693.x
  7. Green, D.E., Fry, J.D., Pair, J.C. and Tisserat, N.A. 1994. Influence of management practices on Rhizoctonia large patch disease in zoysiagrass. HortSci. 29:186-189.
  8. Green, D.E., Fry, J.D., Pair, J.C. and Tisserat, N.A. 1993. Pathogenicity of Rhizoctonia solani AG 2-2 and Ophiosphaerella herpotricha on zoysiagrass. Plant Dis. 77:1040-1044. https://doi.org/10.1094/PD-77-1040
  9. Handelsman, J. and Parke, J.L. 1989. Mechanisms in biocontrol of soilborne plant pathogens. pp. 27-61 in: Plant-Microbe Interactions, Molecular and genetic perspectives, vol. 3. T. Kosuge and E.W. Nester, eds. McGraw-Hill, New York. p. 511.
  10. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F. and Hopwood, D.A. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, U.K.
  11. Lee, J.H., Min, G.Y., Chang, J.W., Choi, S.M., Shim, G.Y. and Kwak, Y-S. 2015a. Investigation of fungicide response of Streptomyces spp. isolated from rhizosphere in zoysiagrass. J. Pesticide Sci. 19:54-63. (In Korean) https://doi.org/10.7585/kjps.2015.19.1.54
  12. Lee, J.H., Min, G.Y., Shim, G.Y., Jeon, C.W., Choi, S.M., Han, J.J. and Kwak, Y-S. 2015b. Soil microbial community analysis in large patch (Rhizoctonia solani AG2-2 IV). Weed Turf. Sci. 4:124-128. (In Korean) https://doi.org/10.5660/WTS.2015.4.2.124
  13. Lee, J.H., Min, G.Y., Shim, G.Y., Jeon, C.W. and Kwak Y-S. 2015c. Physiological characteristics of Actinomycetes isolated from turfgrass rhizosphere. Weed Turf. Sci. 4:348-359. (In Korean) https://doi.org/10.5660/WTS.2015.4.4.348
  14. Liddell, C.M. and Parkem J.L. 1989. Enhanced colonization of pea taproots by a fluorescent pseudomonad biocontrol agent by water infiltration into soil. Phytopathology 79:1327-1332. https://doi.org/10.1094/Phyto-79-1327
  15. Loper, J.E., Haack, C. and Schroth, M.N. 1985. Population dynamics of soil pseudomonads in the rhizosphere of potato (Solanum tuberosum L.). Appl. Environ. Microbiol. 49:416-422.
  16. Mahadevan, B. and Crawford, D.I. 1997. Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzyme Microb. Technol. 20:489-493. https://doi.org/10.1016/S0141-0229(96)00175-5
  17. Sanglier, J.J., Haag, H., Huck, T.A. and Fehr, T. 1993. Novel bioactive compounds from actinomycetes: a short review (1988-1992). Res. Microbiol. 144:633-642. https://doi.org/10.1016/0923-2508(93)90066-B
  18. Paulitz, T.C. and Schroeder, K.L. 2005. A new method for the quantification of Rhizoctonia solani and R. oryzae from soil. Plant Dis.89:767-772. https://doi.org/10.1094/PD-89-0767
  19. Song, C.H., Islam, M.R., Chang, T. and Lee, Y.S. 2012. Isolation and identification of antagonistic bacteria for biological control of large patch disease of zoysiagrass caused by Rhizoctonia solani AG2-2 (IV). Asian J. Turfgrass Sci. 26:8-16. (In Korean)
  20. Suslow, T.V. 1982. Role of root-colonizing bacteria in plant growth. pp. 187-223 in: Phytopathogenic Prokaryotes, Vol. 1. G. Lacy and M. S. Mount, eds. Academic Press, New York. p. 541.
  21. Weller, D.M. 1988. Biological control of soilborne pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:379-407. https://doi.org/10.1146/annurev.py.26.090188.002115