DOI QR코드

DOI QR Code

An Optimal Frequency Condition for An Induction Hardening for An Axle Shaft using Thermal-Electromagnetic Coupled Analysis

열-전자기 연성해석을 이용한 차축에 대한 최적의 고주파 열처리 주파수 조건에 대한 연구

  • Choi, Jin Kyu (Dept. of Mechanical Engineering, ERI, Gyeongsang Nat'l Univ.) ;
  • Nam, Kwang Sik (Dept. of Mechanical Engineering, ERI, Gyeongsang Nat'l Univ.) ;
  • Kim, Jae Ki (Dept. of Mechanical Engineering, ERI, Gyeongsang Nat'l Univ.) ;
  • Choi, Ho Min (Dept. of Mechanical Engineering, ERI, Gyeongsang Nat'l Univ.) ;
  • Lee, Seok Soon (Dept. of Mechanical Engineering, ERI, Gyeongsang Nat'l Univ.)
  • 최진규 (경상대학교 기계공학과, ERI) ;
  • 남광식 (경상대학교 기계공학과, ERI) ;
  • 김재기 (경상대학교 기계공학과, ERI) ;
  • 최호민 (경상대학교 기계공학과, ERI) ;
  • 이석순 (경상대학교 기계공학과, ERI)
  • Received : 2015.07.02
  • Accepted : 2015.11.04
  • Published : 2016.02.01

Abstract

High-frequency induction hardening (HFIH) is used in many industries and has a number of advantages, including reliability and repeatability. It is a non-contact method of providing energy-efficient heat in the minimum amount of time without using a flame. Recently, HFIH has been actively studied using the finite-element method (FEM), however, these studies only focused on the accuracy of the analysis. In this paper, we analyzed HFIH by using a variable frequency based on the conditions of the same shape and input power then comparing the analysis results to experimental results. The analysis and experimental results indicate that the hardening depths are approximately the same using the optimal frequency of 3kHz.

신뢰성 및 반복성을 포함한 장점을 갖고 있는 고주파 유도 경화는 많은 산업분야에 사용된다. 고주파 유도 경화는 화염을 이용하지 않고 최소한의 시간에 에너지-효율적인 가열방법을 제공하는 비접촉식 방법이다. 최근, 유한요소법을 이용한 고주파 유도 경화가 적극적으로 연구되고 있지만, 이들 연구는 단지 분석의 정확도에 초점을 맞추고 있다. 본 논문에서는 코일 및 입력 전원을 동일한 형태의 조건에서 가변 주파수를 적용하여 해석하고 실험결과와 비교하였다. 해석과 실험 결과는 최적의 주파수인 3kHz를 사용하였을 때 경화 깊이가 거의 동일함을 보인다.

Keywords

References

  1. Telning, K. E., 1984, Steel and Its Heat Treatment, Elsevier, pp. 544-564
  2. Hong, S. O., Kim, H. B. and Cho, G. J., 2003, "A Study on Improvement of Workpiece Deformation in High Frequency Heat Treatment," J. of the Korean Society of Manufacturing Process Engineers, Vol. 2, No. 2, pp. 31-36.
  3. Sohn, D. H., Seo, Y. S. and Park, K., 2010, "Three-Dimensional Finite Element Analysis of the Induction Heating Procedure of an Injection Mold," Transactions of Materials Processing, Vol. 19, No. 3, pp. 152-159. https://doi.org/10.5228/KSPP.2010.19.3.152
  4. Park, K., Hwang, J. J., Kwon, O. K. and Yun, J. H., 2007, "Finite Element Analysis of Induction Heating Process for Development of Rapid Mold Heating System," Trans. Mat. Proc, Vol. 16, pp. 113-119. https://doi.org/10.5228/KSPP.2007.16.2.113
  5. Abaqus 6.12 Documentation, Theory Manual, 13/2/2012 edition.
  6. Electrical resistivity and conductivity. https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity.
  7. Permeability(electromagnetism). https://en.wikipedia.org/wiki/Permeability_(electromagn etism).
  8. Kim, W, I., Heo, S, J., 1993, "A Study on the Surface Roughness Influenced by SM45C Hardness in High Frequency Induction Hardening," J. of the Korean Society for Heat Treatment, Vol. 6, No. 1, March, pp.1-8.
  9. Kang, D. H., Lee, J. Y. and Kim, K. W., 2010, "Study on Torsional Strength of Induction-Hardened Axle Shaft," Trans. Korea Soc. Mech. Eng. A, Vol. 34, No. 5, pp. 645-649. https://doi.org/10.3795/KSME-A.2010.34.5.645