DOI QR코드

DOI QR Code

Study of Mechanical and Hygroscopic Characteristics of Nanoclay/Epoxy Nanocomposites

나노클레이/에폭시 나노-복합재료의 기계적 및 흡습 특성에 관한 연구

  • Kim, Do Hyoung (Dept. of Mechanical Engineering, Hanyang Univ.) ;
  • Kim, Jung Kyu (Retreated Scientists and Engineers for Advancement of Technology, Korea Institute of Science and Technology Information) ;
  • Kim, Hak Sung (Dept. of Mechanical Engineering, Hanyang Univ.)
  • 김도형 (한양대학교 융합기계공학과) ;
  • 김정규 (한국과학기술정보연구원 ReSEAT) ;
  • 김학성 (한양대학교 융합기계공학과)
  • Received : 2015.02.02
  • Accepted : 2015.08.12
  • Published : 2016.02.01

Abstract

In this study, the moisture related hygroscopic characteristics and mechanical properties of epoxy-clay nanocomposites were investigated by experiments as a function of the weight fraction of nanoclay. The hygroscopic and mechanical properties including the moisture saturation amount, moisture diffusivity, adhesive strength, and tensile properties were obtained by moisture absorption test and various tensile tests, respectively. Also, the molecular dynamics (MD) simulation was devised to study of hygroscopic characteristics of nanocomposites and the results were compared to experimental results as a function of the nanoclay content. It was demonstrated that the proposed MD simulation technique can be successfully used for the prediction of the effects of the nanoclay on the moisture diffusion characteristics.

본 연구에서는 나노클레이 함량에 따른 나노클레이-에폭시 나노복합재료의 흡습 특성 및 기계적 특성을 실험을 통해 분석하였다. 나노복합재료의 흡습 시험, 인장시험 및 접착조인트를 나노클레이 함량에 따라 구성하였으며 이를 통해 수분 포화도, 수분 확산 계수, 인장 강도 및 접착 강도와 같은 특성을 파악 할 수 있었다. 또한 나노클레이 및 에폭시 재료를 분자단위로 모델링하여 재료의 흡습 특성변화의 매커니즘을 분석할 수 있는 분자동역학 시뮬레이션을 수행하였으며 그 결과를 실험결과와 비교하여 고찰하였다. 본 연구에서 제안된 분자동역학 시뮬레이션 기법은 흡습특성의 변화를 성공적으로 예측할 수 있었으며, 추후 다른 나노-복합재료의 연구에도 널리 활용될 것이라 기대된다.

Keywords

References

  1. Dodiuk, H., Sharon, G. and Kenig, S., 1990, "Hygrothermal Properties of Adhesively Bonded Joints and Their Correlation with Bulk Adhesive Properties," Journal of Adhesion, Vol. 33, pp. 45-61. https://doi.org/10.1080/00218469008030416
  2. Edelstein, A. S. and Cammaratra, R. C., 1998, "Nanomaterials: Synthesis, Properties and Applications," CRC Press, pp. 303-343.
  3. Emmanuel,, P. G., 1996, "Polymer Layered Silicate Nanocomposites," Advanced Materials, Vol. 8, No. 1, pp. 29-35. https://doi.org/10.1002/adma.19960080104
  4. Lam, C. K. and Lau, K. T., 2006, "Localized Elastic Modulus Distribution of Nanoclay/Epoxy Composites by Using Nanoindentation," Composite Structures, Vol. 75, pp. 553-558. https://doi.org/10.1016/j.compstruct.2006.04.045
  5. Crank, J., 1975, "The Mathematics of Diffusion." 2d ed. Oxford, Eng: Clarendon Press.
  6. Maiti, P., Yamada, K., Okamoto, M., Ueda, K. and Okamoto, K., 2002, "New Polylactide/Layered Silicate Nanocomposites: Role of Organoclays," Chem Mater, Vol. 14, No.11, pp. 4654-4661. https://doi.org/10.1021/cm020391b
  7. Wu, C. F. and Xu, W. J., 2006, "Atomistic Molecular Modelling of Crosslinked Epoxy Resin," Polymer, Vol. 47, pp. 6004-6009. https://doi.org/10.1016/j.polymer.2006.06.025
  8. Frenkel, D. and Smit, B., 2002, "Understanding Molecular Simulation : from Algorithms to Applications," 2nd ed. San Diego: Academic Press.
  9. Lin, Y. C. and Chen, X., 2005, "Investigation of Moisture Diffusion in Epoxy System: Experiments and Molecular Dynamics Simulations," Chemical Physics Letters, Vol. 412, pp. 412-322.
  10. Yang, Q. Y., and Zhong, C. L., 2005, "Molecular Simulation of Adsorption and Diffusion of Hydrogen in Metal-Organic Frameworks," J Phys Chem B, Vol. 109, pp. 11862-11864. https://doi.org/10.1021/jp051903n
  11. Wang, K.. Liang, S., Deng, J. N., Yang, H., Zhang, Q., Fu, Q., Dong, X., Wang, D. and Han, C. C., 2006, "The Role of Clay Network on Macromolecular Chain Mobility and Relaxation in Isotactic Polypropylene/Organoclay Nanocomposites," Polymer, Vol. 47, pp. 7131-7144. https://doi.org/10.1016/j.polymer.2006.07.067
  12. Tocci, E., Hofmann, D., Paul, D., Russo, N. and Drioli, E., 2001, "A Molecular Simulation Study on Gas Diffusion in a Dense Poly(Ether-Ether-Ketone) Membrane," Polymer, Vol. 42, pp. 521-533. https://doi.org/10.1016/S0032-3861(00)00102-6
  13. Sancaktar, E. and Kuznicki, J., 2011, "Nanocomposite Adhesives: Mechanical Behavior with Nanoclay," Int J Adhes Adhes, Vol. 31, pp. 286-300. https://doi.org/10.1016/j.ijadhadh.2010.09.006
  14. Khalili, S. M. R., Tavakolian, M. and Sarabi, A., 2010, "Mechanical Properties of Nanoclay Reinforced Epoxy Adhesive Bonded Joints made with Composite Materials," J Adhesion Science and Technology, Vol. 24, pp. 1917-1928. https://doi.org/10.1163/016942410X507650

Cited by

  1. Effects of heat-treated HNTs on the mechanical properties of GFRP under moisture absorption vol.32, pp.19, 2018, https://doi.org/10.1142/S0217979218400702