DOI QR코드

DOI QR Code

Joint Module with Joint Torque Sensor Having Disk-type Coupling for Torque Error Reduction

토크 오차 감소를 위한 디스크형 커플링을 갖는 토크센서가 내장된 로봇 관절모듈

  • Received : 2015.01.10
  • Accepted : 2015.11.17
  • Published : 2016.02.01

Abstract

Force control and collision detection for a robot are usually conducted using a 6-axis force/torque sensor mounted at the end-effector. However, this scheme suffers from high-cost and the inability to detect collisions at the robot body. As an alternative, joint torque sensors embedded in each joint were used, which also suffered from various errors in torque measurement. To resolve this problem, a robot joint module with an improved joint torque sensor is proposed in this study. In the proposed torque sensor, a cross-roller bearing and disk-type coupling are added to prevent the moment load from adversely affecting the measurement of the joint torque under consideration. This joint design also aims to reduce the stress induced during the assembly process of the sensor. The performance of the proposed joint torque sensor was verified through various experiments.

기존에는 로봇 말단에 6축 힘/토크 센서를 부착하여 로봇의 힘제어 및 충돌감지를 수행하였지만, 이 방법은 매우 고가이고, 로봇의 몸체에서 발생한 충돌을 감지할 수 없었다. 이의 대안으로 각 관절에 관절 토크센서를 장착하였으나, 토크 측정 시에 발생하는 다양한 오차로 인하여 실제 적용에 한계가 있었다. 이러한 문제를 해결하고자 본 연구에서는 정확한 토크 측정을 위한 관절 토크센서 및 이를 포함하는 관절모듈을 개발하였다. 제안된 관절모듈은 로봇에 인가되는 모멘트 부하를 지지하고, 조립 시 발생하는 응력을 감소시키기 위하여 토크센서에 디스크형 커플링을 첨가하여 원하는 회전토크만을 효과적으로 측정할 수 있도록 하였다. 본 논문에서는 다양한 실험을 통하여 제안한 토크센서의 성능을 검증하였다.

Keywords

References

  1. Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., Kawasaki, T., Hirata, M., Akachi, K. and Isozumi, T., 2004, "Humanoid Robot HRP 2," Proc. of the 2004 IEEE Int. Conf. on Robotics and Automation, pp. 1083-1090.
  2. Gravel, P.D. and Newman, S. W., 2011, "Flexible Robotic Assembly Efforts at Ford Motor Company," Proc. of the IEEE Int. Sym. on Intelligent Control, pp.173-182.
  3. Tsetserukou, D., Tadakuma, R., Kajimoto, H., Kawakami, N. and Tachi, S., 2007, "Development of a Whole-Sensitive Teleoperated Robot Arm using Torque Sensing Technique," Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems, pp. 476-481.
  4. Parmiggiani, A., Randazzo, M., Natale, L., Metta, G. and Sandini, G., 2009, "Joint Torque Sensing for the Upper-Body of the iCub Humanoid Robot," IEEE/RAS Int. Conf. on Humanoid Robots, pp. 15-20.
  5. Cho, C. N., Kim, J. H., Lee, S. D. and Song, J. B., 2012, "Collision Detection and Reaction on 7 DOF Service Robot Arm Using Residual Observer," Journal of Mechanical Science and Technology, Vol. 26 No. 4, pp. 1197-1203. https://doi.org/10.1007/s12206-012-0230-0
  6. Hirzinger, G., Sporer, N., Albu-Schaffer, A., Hahnle, M., Krenn, R., Pascucci, A. and Schedl, M., 2002, "DLR's Torque-Controlled Light Weight Robot III-are we Reaching the Technological Limits Now?" Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 1710-1716.
  7. Siciliano, B. and Khatib, O., 2007, "Handbook of Robotics," Springer-Verlag.
  8. SamickHDS Co. LTD., http://www.samickhds.co.kr
  9. Aghili, F., Buehler, M. and Hollerbach, J., 2001, "Design of a Hollow Hexaform Torque Sensor for Robot Joint," Int. Journal of Robotics Research, Vol. 20, No. 12, pp. 967-976. https://doi.org/10.1177/02783640122068227
  10. CAS Co., http://www.globalcas.com

Cited by

  1. External Force Estimation by Modifying RLS using Joint Torque Sensor for Peg-in-Hole Assembly Operation vol.13, pp.1, 2018, https://doi.org/10.7746/jkros.2018.13.1.055