DOI QR코드

DOI QR Code

Development of Furan Mold Design and Machining System for Marine Propeller Casting

선박용 프로펠러 후란주형 설계 및 가공 시스템 개발

  • Received : 2015.10.12
  • Accepted : 2015.10.21
  • Published : 2016.01.01

Abstract

A furan mold design and machining system for marine propeller casting was developed. In general, a large marine propeller is produced by casting in a foundry, where the upper and lower molds are constructed of cement or other materials like furan. Then, the cast workpiece is machined and manually ground. Currently, furan mold construction requires a series of manual tasks. This introduces a fairly large amount of stock allowances, which require a considerable number of man-hours for later machining and grinding, and also increase the work processes. A mold design and off-line robot programming software tool with a six-axis robot hardware system was developed to enhance the shape accuracy and productivity. This system will be applied in a Korean ship building company.

본 연구는 선박용 프로펠러 주물 생산을 위한 후란주형 설계 및 가공 시스템을 개발하였다. 대형 선박용 프로펠러는 시멘트 혹은 후란 소재로 상형 및 하형 주형을 제작하고, 주조를 통해 소재를 제작한다. 이후 주물소재에 대한 일련의 기계가공 및 사상을 거쳐 제품을 완성한다. 기존 후란주형은 수작업을 통한 조형을 통해 제작되므로 세부 공정이 많아질뿐더러, 상당한 소재여유가 존재함으로써 기계가공 및 사상 공수가 증가한다. 이에 따라 후란주형의 제작 정밀도를 향상하고, 생산과정의 표준화 및 생산성 향상을 위해 설계 소프트웨어 및 6축 로봇을 이용한 후란주형 제작 시스템을 개발하였다.

Keywords

References

  1. Furan molding propeller construction, http://www.hhi.co.kr/.
  2. Park, J. W., Lee, J. G. and Jun, C. S., 2009, "Near Net-Shape Five-Axis Face Milling of Marine Propellers," International Journal of Precision Engineering and Manufacturing, Vol. 10 No. 4, pp. 5-12. https://doi.org/10.1007/s12541-009-0065-5
  3. CATIA, http://www.3ds.com/.
  4. Initial Graphics Exchange Specification, https://en.wikipedia.org/wiki/IGES/.
  5. Lee, K., 1999, Principles of CAD/CAM/CAE Systems, Addison Wesley, pp. 67-68.
  6. Cho, H. U., Park, J. W. and Chung, Y. C., 2012, "Computation of Optimal Tool Length for 5-Axis Ball-Ended Milling of Molding Die," Journal of Mechanical Science and Technology, Vol. 26, No. 10, pp. 3097-3101. https://doi.org/10.1007/s12206-012-0835-3
  7. Park, J. W., Cho, H. U., Chung, C. W., Lee, Y. S. and Jeon, D. J., 2012, "Modeling and Grinding Large Sculptured Surface by Robotic Digitization," Journal of Mechanical Science and Technology, Vol. 26, No. 7, pp. 2087-2091. https://doi.org/10.1007/s12206-012-0520-6
  8. Lee, M. K., Choi, B. O. and Park, K. W., 1997, "Study on Propeller Grinding Applied by a High Stiffness Robot, Journal of the Korean Society of Precision Engineering, Vol. 14 No. 12, pp. 56-65.
  9. Choi, B. K., Park, J. W. and Jun, C. S., 1993, "Cutter-Location Data Optimization in 5-Axis Surface Machining," Computer-Aided Design, Vol. 25, No. 6, pp. 377-386. https://doi.org/10.1016/0010-4485(93)90033-K
  10. Vickers, G. W., 1977, "Computer-Aided Manufacture of Marine Propellers," Computer-Aided Design, Vol. 9, No. 4, pp. 267-274. https://doi.org/10.1016/0010-4485(77)90008-2
  11. Lee, J. H. and Lee, C. S., 2002, "A Study on Geometric Modeling and Generation of 4-Axis NC Data for Single Setup of Small Marine Propeller," Korean Journal of Society of CAD/CAM Engineers, Vol. 7, No. 4, pp. 254-261.
  12. Kuo, H. C. and Dzan, W. Y., 2002, "The Analysis of NC Machining Efficiency for Marine Propellers," Journal of Materials Processing Technology, Vol. 124, pp. 389-395. https://doi.org/10.1016/S0924-0136(01)01191-8
  13. Ramos, A. M., Relvas, C. and Simoes, J. A., 2003, "The Influence of Finishing Milling Strategies on Texture, Roughness and Dimensional Deviations on the Machining of Complex Surfaces," Journal of Materials Processing Technology, Vol. 136, pp. 209-216. https://doi.org/10.1016/S0924-0136(03)00160-2