• Title/Summary/Keyword: Radiation heat loss

검색결과 163건 처리시간 0.03초

냉장고 가스켓 주위의 복사열전달 효과에 관한 연구 (A Study on the Radiation Heat Transfer Effect near a Refrigerator Gasket)

  • 하지수
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.1605-1610
    • /
    • 2015
  • 본 논문은 냉장고의 열손실의 약 30%를 차지하고 있는 가스켓 주위의 열전달 해석시 복사열전달을 고려하지 않은 경우와 고려한 경우가 많은 차이가 있어서 가스켓 주위의 열전달 해석시 복사열전달 고려 여부에 따른 열손실 효과를 살펴보는 연구이다. 이를 위해 가스켓 주위를 단순화한 형상으로 모델링하여 열전달 전산해석을 수행하였다. 본 연구를 통해서 가스켓 내부의 공기층을 단순히 전도열전달만 고려한 경우 열손실이 $25.6W/m^2$이고 복사열전달을 함께 고려한 경우 $55.0W/m^2$로 약 2.2배 크게 나타남을 알 수 있었다. 가스켓 내부에 복사열전달 차단판을 0에서 7개로 변화하면서 복사열전달 저감 효과를 살펴본 결과 차단판 개수가 증가하여 7개 인 경우는 설치하지 않은 경우에 비하여 열손실이 $55.0W/m^2$에서 $36.7W/m^2$로 33% 감소함을 알 수 있었다. 또한 같은 개수의 복사 차단판일 경우는 냉장고 내부와 외부에 치우치는 쪽으로 설치하는 것이 가스켓의 가운데에 설치하는 것 보다 효과적임을 알 수 있었다.

접시형 태양열 집광시스템용 흡수기의 열손실 해석 (An Analysis of Heat Losses from Receivers for a Multifaceted Parabolic Solar Collector)

  • 류시열;서태범;강용혁
    • 태양에너지
    • /
    • 제20권3호
    • /
    • pp.61-73
    • /
    • 2000
  • Heat losses from receivers for a dish-type solar energy collecting system are numerically investigated. The analytical method for predicting conductive heat loss from a cavity receiver is used. The Stine and McDonald Model is used to estimate convective heat loss. Two kinds of techniques for the radiation analysis are used. The Net Radiation Method that is based on the radiation heat balance on the surface is used to calculate the radiation heat transfer rate from the inside surface of the cavity receiver to the environment. The Monte-Carlo Method that is the statistical approach is adopted to predict the radiation heat transfer rate from the reflector to the receiver. Based on the heat loss analysis, the performance of two different receivers for multifaceted parabolic solar collectors with several flat facets can be estimated, and the optimal facet size is obtained.

  • PDF

고압하에서 수소 확산화염의 소염에 미치는 복사 열손실 효과에 관한 수치적 연구 (A Numerical Study on Effect of Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames at High Pressure)

  • 오태균;손채훈
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.351-358
    • /
    • 2008
  • Extinction characteristics of hydrogen-air diffusion flames at various pressures are investigated numerically by adopting counterflow flame configuration as a model flamelet. Especially, effect of radiative heat loss on flame extinction is emphasized. Only gas-phase radiation is considered here and it is assumed that $H_2O$ is the only radiating species. Radiation term depends on flame thickness, temperature, $H_2O$ concentration, and pressure. From the calculated flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of $H_2O$ increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region, where flame is sustained, shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate. The present numerical results show that radiative heat loss can reduce the operating range of a combustor significantly.

대류, 복사 사각 핀의 해석 (Analysis of a Convective, Radiating Rectangular Fin)

  • 강형석;김종욱
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.29-34
    • /
    • 2006
  • A convective, radiating rectangular fin is analysed by using the one dimensional analytic method. Instead of constant fin base temperature, heat conduction from the inner wall to the fin base is considered as the fin base boundary condition. Radiation heat transfer is approximately linearized. For different fin tip length, temperature profile along the normalized fin position is shown. The fin tip length for 98% of the maximum heat loss with the variations of fin base length and radiation characteristic number is listed. The maximum heat loss is presented as a function of the fin base length, radiation characteristic number and Biot number.

  • PDF

낙동강 구미 보의 수면 열수지 계절 변화 (Seasonal Variation of the Surface Heat Budget in the Gumi Reservoir of Nakdong River)

  • 김학윤;서광수;조창범;김해동
    • 한국환경과학회지
    • /
    • 제25권8호
    • /
    • pp.1057-1063
    • /
    • 2016
  • The heat budget is investigated in the Gumi Reservoir of the Nakdong river. In warm climate season, solar radiation effects play a important role in the change of water temperature. The features of the surface heat balance are almost derived by the latent heat flux and the solar radiation flux. On the other hand, in cold climate season, change of heat stored in the water is mainly dominated by latent and sensible heat transfer between water and air, since flux of solar radiation and loss of outgoing long wave radiation balance approximately. For the annual averages, net flux of radiation, evaporation(latent heat) loss are dominant in the Gumi reservoir. The evaporation losses are dominant from spring to early winter. This means that the Gumi reservoir rolls like a lake of thermal medium or deep depth.

Heat Losses from the Receivers of a Multifaceted Parabolic Solar Energy Collecting System

  • Seo, Taebeom;Ryu, Siyoul;Kang, Yongheock
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1185-1195
    • /
    • 2003
  • Heat losses from the receivers of a dish-type solar energy collecting system at the Korea Institute of Energy Research (KIER) are numerically investigated. It is assumed that a number of flat square mirrors are arranged on the parabolic dish structure to serve as a reflector. Two different types of receivers, which have conical and dome shapes, are considered for the system, and several modes of heat losses from the receivers are thoroughly studied. Using the Stine and McDonald model convective heat loss from a receiver is estimated. The Net Radiation Method is used to calculate the radiation heat transfer rate by emission from the inside surface of the cavity receiver to the environment. The Monte-Carlo Method is used to predict the radiation heat transfer rate from the reflector to the receiver. Tracing the photons generated, the reflection loss from the receivers can be estimated. The radiative heat flux distribution produced by a multifaceted parabolic concentrator on the focal plane is estimated using the cone optics method. Also, the solar radiation spillage around the aperture is calculated. Based on the results of the analysis, the performances of two different receivers with multifaceted parabolic solar energy collectors are evaluated.

복사열손실이 있는 비예혼합 튜브형 화염에 관한 수치 해석적 연구 (A Numerical Study of Opposed Nonpremixed Tubular Flames with Radiative Heat Loss)

  • 박현수;유춘상
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.247-250
    • /
    • 2015
  • The characteristics of opposed nonpremixed tubular flames with radiation heat loss are investigated using linear stability analysis and 2-D numerical simulations. Two extinction limits, as the $Damk{\ddot{o}}hler$ number is small or large, are confirmed using finite difference method with a simple continuation method. It is verified that the results of linear stability analysis predict the number of flame cells and the critical Da starting cellular instability or amplification of temperature near both extinction limits with good resolution.

  • PDF

비축대칭 대류열손실 경계조건하에서 원관내 복사에 관여하는 매질의 층류 열적 발달의 수치해석 (Analysis on the thermal development of radiatively participating pipe flow with nonaxisymmetric convective heat loss)

  • 김택영;백승욱
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.2995-3002
    • /
    • 1995
  • The cooling problem of the hot internal pipe flow has been investigated. Simultaneous conduction, convection, and radiation were considered with azimuthally varying convective heat loss at the pipe wall. A complex, nonlinear integro-differential radiative transfer equation was solved by the discrete ordinates method (or called S$_{N}$ method). The energy equation was solved by control volume based finite difference technique. A parametric study was performed by varying the conduction-to-radiation parameter, optical thickness, and scattering albedo. The results have shown that initially the radiatively active medium could be more efficiently cooled down compared with the cases otherwise. But even for the case with dominant radiation, as the medium temperature was lowered, the contribution of conduction became to exceed that of radiation.n.

미소 중력장에 있는 저신장율 화염소화에 미치는 다차원 효과 (Multi-Dimensional Effects on a tow Strain Rate Flame Extinction Under Microgravity Environment)

  • 오창보;김정수;;박정
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.988-996
    • /
    • 2005
  • Flame structure and extinction mechanism of counterflow methane/air non-premixed flame diluted with nitrogen are studied by NASA 2.2 s drop tower experiments and two-dimensional numerical simulations with finite rate chemistry and transport properties. Extinction mechanism at low strain rate is examined through the comparison among results of microgravity experiment, 1D and 2D simulations with a finite burner diameter. A two-dimensional simulation in counterflow flame especially with a finite burner diameter is shown to be very important in explaining the importance of multidimensional effects and lateral heat loss in flame extinction, effects that cannot be understood using a one-dimensional flamelet model. Extinction mechanism at low strain rate is quite different from that at high strain rate. Low strain rate flame is extinguished initially at the outer flame edge, the flame shrinks inward, and finally is extinguished at the center. It is clarified from the overall fractional contribution by each term in energy equation to heat release rate that the contribution of radiation fraction with 1D and 2D simulations does not change so much and the overall fractional contribution is decisively attributed to radial conduction ('lateral heat loss'). The experiments by Maruta et at. can be only completely understood if multi-dimensional heat loss effects are considered. It is, as a result, verified that the turning point, which is caused only by pure radiation heat loss, has to be shifted towards much lower global strain rate in microgravity flame.

접시형 태양열 집광시스템용 흡수기의 자연대류 열손실 수치해석 연구 (Numerical investigation of natural convection heat loss in solar receiver for dish concentrating system)

  • 강명철;강용혁;김종규;김진수;유성연
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.680-683
    • /
    • 2007
  • In dish concentrating system, natural convection heat loss occurs in cavity receiver. Heat loss mechanisms of conduction, convection, and radiation can reduce the system efficiency. To obtain the high efficiency, the receiver is to absorb the maximum of solar energy and transfer to the working fluid with maximum of heat losses. The convection heat loss is an important factor to determine the system performance. Numerical analysis of the convection heat loss of receiver was carried out for varing inclinaton angle from 0$^{\cdot}$ to 70$^{\cdot}$ with temperature range from 400$^{\cdot}C$ to 600$^{\cdot}C$ using the commercial software package, Fluent 6.0. The result of numerical analysis was comparable with convection heat loss model of solar receiver.

  • PDF