DOI QR코드

DOI QR Code

Effects of Thermal Treatments on Inactivation of Histidine Decarboxylase from Morganella morganii and Photobacterium phosphoreum

열처리에 의한 Morganella morganii와 Photobacterium phosphoreum 유래 Histidine Decarboxylase의 불활성화

  • Pak, Won-Min (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Kim, Koth-Bong-Woo-Ri (Institute of Fisheries Sciences, Pukyong National University) ;
  • Kim, Min-Ji (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Park, Ji-Hye (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Bae, Nan-Young (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Park, Sun-Hee (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Ahn, Dong-Hyun (Department of Food Science & Technology/Institute of Food Science, Pukyong National University)
  • 박원민 (부경대학교 식품공학과/식품연구소) ;
  • 김꽃봉우리 (부경대학교 수산과학연구소) ;
  • 김민지 (부경대학교 식품공학과/식품연구소) ;
  • 박지혜 (부경대학교 식품공학과/식품연구소) ;
  • 배난영 (부경대학교 식품공학과/식품연구소) ;
  • 박선희 (부경대학교 식품공학과/식품연구소) ;
  • 안동현 (부경대학교 식품공학과/식품연구소)
  • Received : 2015.11.03
  • Accepted : 2015.12.18
  • Published : 2016.03.31

Abstract

This study was performed to investigate the effects of various thermal treatments on the growth of Morganella morganii and Photobacterium phosphoreum and activity of crude histidine decarboxylase (HDC) obtained from M. morganii and P. phosphoreum. Crude HDC and the two strains were treated at $65^{\circ}C$/30 min, $80^{\circ}C$/10 min, $100^{\circ}C$/10 min, and $121^{\circ}C$/10 min. Activity of crude HDC decreased with increasing temperature. Viable cells counts of M. morganii and P. phosphoreum were not detected in any heated samples. SDS-PAGE patterns of heated HDC did not show significant differences up to $100^{\circ}C$. However, at $121^{\circ}C$, protein band intensity was weakened. In native-PAGE, there was a major change in the pattern of HDC at $65^{\circ}C$. These results suggest that thermal treatment can help to reduce histamine production by reducing HDC activity and growth of M. morganii and P. phosphoreum.

Histamine을 생성하는 Morganella morganii와 Photobacterium phosphoreum으로부터 crude histidine decarboxylase(HDC)를 추출하여 $65{\sim}121^{\circ}C$로 열처리한 다음 균의 생육 및 효소 활성 변화에 대해 살펴보았다. 그 결과 M. morganii와 P. phosphoreum은 모든 열처리 조건에서 비 가열 처리구와 비교 시 균의 생육이 저해됨을 확인하였다. M. morganii와 P. phosphoreum 유래 HDC의 효소 활성은 $65^{\circ}C$에서 90% 이상의 효소 활성이 저해됨을 확인하였고, 온도가 증가함에 따라 유의적으로 활성이 억제되는 것으로 나타났다. SDS-PAGE 결과에서는 $65{\sim}100^{\circ}C$ 범위에서 비가열 처리구와 비교 시 조효소액의 단백질 패턴의 변화가 크지 않았으나, $121^{\circ}C$에서 단백질 band의 강도가 크게 약해졌다. Native-PAGE에서는 $65^{\circ}C$ 처리 조건에서부터 단백질 패턴의 변화가 크게 나타났다. 따라서 가열처리($65{\sim}121^{\circ}C$)는 histamine 생성균인 M. morganii와 P. phosphoreum의 생육을 억제할 뿐만 아니라 HDC의 효소 활성도가 저해됨을 확인하여, 식품산업에서 적용되고 있는 열처리 조건에서 histamine 생성 억제에 큰 효과가 있는 것으로 생각한다.

Keywords

References

  1. Ferencík M. 1970. Formation of histamine during bacterial decarboxylation of histidine in the flesh of some marine fishes. J Hyg Epidemiol Microbiol Immunol 14: 52-60.
  2. Kawabata T, Ishizaka K, Miura T. 1956. Studies on the food poisoning associated with putrefaction of marine products- VII. An outbreak of allergy-like food poisoning caused by "sashimi" of Parathunnus mebachi and the isolation of causative bacteria. Bull Jpn Soc Sci Fish 22: 41-47. https://doi.org/10.2331/suisan.22.41
  3. Kanki M, Yoda T, Tsukamoto T, Baba E. 2007. Histidine decarboxylase and their role in accumulation of histamine in tuna and dried saury. Appl Environ Microbiol 73: 1467- 1473. https://doi.org/10.1128/AEM.01907-06
  4. Lerke PA, Werner SB, Taylor SL, Guthertz LS. 1978. Scombroid poisoning. Report of an outbreak. West J Med 129: 381-386.
  5. Taylor SL, Guthertz LS, Leatherwood M, Lieber ER. 1979. Histamine production by Klebsiella pneumoniae and an incident of scombroid fish poisoning. Appl Environ Microbiol 37: 274-278.
  6. Havelka B. 1967. Role of the Hafnia bacteria in the rise of histamine in tuna fish meat. Cesk Hyg 12: 343-352.
  7. Omura Y, Price RJ, Olcott HS. 1978. Histamine forming bacteria isolated from spoiled skipjack tuna and jack mackerel. J Food Sci 43: 1779-1781. https://doi.org/10.1111/j.1365-2621.1978.tb07412.x
  8. Taylor SL, Speckhard MW. 1983. Isolation of histamineproducing bacteria from frozen tuna. Mar Fish Rev 45: 35-39.
  9. Yoshinaga DH, Frank HA. 1982. Histamine-producing bacteria in decomposing skipjack tuna (Katsuwonus pelamis). Appl Environ Microbiol 44: 447-452.
  10. ten Brink B, Damink C, Joosten HMLJ, Huis in't Veld JHJ. 1990. Occurrence and formation of biologically active amines in foods. Int J Food Microbiol 11: 73-84. https://doi.org/10.1016/0168-1605(90)90040-C
  11. Moya-Garcia AA, Medina MA, Sanchez-Jimenez F. 2005. Mammalian histidine decarboxylase: from structure to function. Bioessays 27: 57-63. https://doi.org/10.1002/bies.20174
  12. Hungerford JM. 2010. Scombroid poisoning: a review. Toxicon 56: 231-243. https://doi.org/10.1016/j.toxicon.2010.02.006
  13. Mah JH, Hwang HJ. 2009. Inhibition of biogenic amine formation in a salted and fermented anchovy by Staphylococcus xylosus as a protective culture. Food Control 20: 796-801. https://doi.org/10.1016/j.foodcont.2008.10.005
  14. Mah JH, Kim YJ, Hwang HJ. 2009. Inhibitory effects of garlic and other spices on biogenic amine production in Myeolchi-jeot, Korean salted and fermented anchovy product. Food Control 20: 449-454. https://doi.org/10.1016/j.foodcont.2008.07.006
  15. Wendakoon CN, Sakahuchi M. 1993. Combined effect of sodium chloride and clove on growth and biogenic amine formation of Enterobacter aerogenes in mackerel muscle extract. J Food Prot 56: 410-413. https://doi.org/10.4315/0362-028X-56.5.410
  16. Shakila RJ, Vasundhara TS, Rao DV. 1996. Inhibitory effect of spices on in vitro histamine production and histidine decarboxylase activity of Morganella morganii and on the biogenic amine formation in mackerel stored at 30 degrees C. Z Lebensm Unters Forsch 203: 71-76. https://doi.org/10.1007/BF01267773
  17. Kim DH, Kim KB, Cho JY, Ahn DH. 2014. Inhibitory effects of brown algae extracts on histamine production in mackerel muscle via inhibition of growth and histidine decarboxylase activity of Morganella morganii. J Microbiol Biotechnol 24: 465-474. https://doi.org/10.4014/jmb.1309.09071
  18. Kim DH, Kim KBWR, Ahn DH. 2013. Inhibitory effects of high-hydrostatic-pressure treatments on histamine production in mackerel (Scomber japonicus) muscle inoculated with Morganella morganii and Photobacterium phosphoreum. Food Control 34: 307-311. https://doi.org/10.1016/j.foodcont.2013.04.032
  19. Lee K, Kim KH, Kim HK. 2002. Thermal inactivation parameters of peroxidase in Flammulina velutipes and Lyophyllum ulmarium. Korean J Food Sci Technol 34: 1067- 1072.
  20. Jun SY, Lee YK. 2014. Effects of heat treatments on the microbial reduction and germination rates of red radish sprout seeds (Raphanus sativus). Korean J Food Preserv 21: 544-548. https://doi.org/10.11002/kjfp.2014.21.4.544
  21. Tanase S, Guirard BM, Snell EE. 1984. Purification and properties of a pyridoxal 5'-phosphate-dependent histidine decarboxylase from Morganella morganii AM-15. J Biol Chem 260: 6738-6746.
  22. Setlow B, Setlow P. 1995. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from killing by dry heat. Appl Environ Microbiol 61: 2787-2790.
  23. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  24. Emborg J, Dalgaard P. 2008. Growth, inactivation and histamine formation of Morganella psychrotolerans and Morganella morganii-development and evaluation of predictive models. Int J Food Microbiol 128: 234-243. https://doi.org/10.1016/j.ijfoodmicro.2008.08.015
  25. Osborne CM, Bremer PJ. 2000. Application of the Bigelow (z-value) model and histamine detection to determine the time and temperature required to eliminate Morganella morganii from seafood. J Food Prot 63: 277-280. https://doi.org/10.4315/0362-028X-63.2.277
  26. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64: 548-572. https://doi.org/10.1128/MMBR.64.3.548-572.2000
  27. Tabanelli G, Torriani S, Rossi F, Rizzotti L, Gardini F. 2012. Effect of chemico-physical parameters on the histidine decarboxylase (HdcA) enzymatic activity in Streptococcus thermophilus PRI60. J Food Sci 77: M231-237. https://doi.org/10.1111/j.1750-3841.2012.02628.x
  28. Guirard BM, Snell EE. 1987. Purification and properties of pyridoxal-5'-phosphate-dependent histidine decarboxylases from Klebsiella planticola and Enterobacter aerogenes. J Bacteriol 169: 3963-3968. https://doi.org/10.1128/jb.169.9.3963-3968.1987

Cited by

  1. Inactivation of histidine decarboxylase by gamma irradiation for controlling histamine formation vol.141, 2017, https://doi.org/10.1016/j.radphyschem.2017.08.010