DOI QR코드

DOI QR Code

The Effect of Toll-like Receptor 2 Activation on the Non-opsonic Phagocytosis of Oral Bacteria and Concomitant Production of Reactive Oxygen Species by Human Neutrophils

  • Kim, Kap Youl (Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Choi, Youngnim (Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University)
  • 투고 : 2015.12.31
  • 심사 : 2016.02.05
  • 발행 : 2016.03.31

초록

Chronic/cyclic neutropenia, leukocyte adhesion deficiency syndrome, Papillon-$Lef{\grave{e}}vre$ syndrome, and $Ch{\grave{e}}diak$-Higashi syndrome are associated with severe periodontitis, suggesting the importance of neutrophils in the maintenance of periodontal health. Various Toll-like receptor (TLR) ligands are known to stimulate neutrophil function, including FcR-mediated phagocytosis. In the present study, the effect of TLR2 activation on the non-opsonic phagocytosis of oral bacteria and concomitant production of reactive oxygen species (ROS) by human neutrophils was evaluated. Neutrophils isolated from peripheral blood were incubated with Streptococcus sanguinis or Porphyromonas gingivalis in the presence of various concentrations of $Pam_3CSK_4$, a synthetic TLR2 ligand, and analyzed for phagocytosis and ROS production by flow cytometry and chemiluminescence, respectively. $Pam_3CSK_4$ significantly increased the phagocytosis of both bacterial species in a dose-dependent manner. However, the enhancing effect was greater for S. sanguinis than for P. gingivalis. $Pam_3CSK_4$ alone induced ROS production in neutrophils and also increased concomitant ROS production induced by bacteria. Interestingly, incubation with P. gingivalis and $Pam_3CSK_4$ decreased the amounts of ROS, as compared to $Pam_3CSK_4$ alone, indicating the possibility that P. gingivalis survives within neutrophils. However, neutrophils efficiently killed phagocytosed bacteria of both species despite the absence of $Pam_3CSK_4$. Although P. gingivalis is poorly phagocytosed even by the TLR2-activated neutrophils, TLR2 activation of neutrophils may help to reduce the colonization of P. gingivalis by efficiently eliminating S. sanguinis, an early colonizer, in subgingival biofilm.

키워드

참고문헌

  1. Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014;35:3-11. doi:10.1016/j.it.2013.09.001.
  2. Dye BA. Global periodontal disease epidemiology. Periodontol 2000. 2012;58:10-25. doi: 10.1111/j.1600-0757.2011.00413.x.
  3. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43:5721-5732. doi: 10.1128/JCM.43.11.5721-5732.2005.
  4. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25:134-144. https://doi.org/10.1111/j.1600-051X.1998.tb02419.x
  5. Feng Z, Weinberg A. Role of bacteria in health and disease of periodontal tissues. Periodontol 2000. 2006;40:50-76. doi: 10.1111/j.1600-0757.2005.00148.x.
  6. Zhao C, Wang I, Lehrer RI. Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett. 1996;396:319-322. https://doi.org/10.1016/0014-5793(96)01123-4
  7. Carrassi A, Abati S, Santarelli G, Vogel G. Periodontitis in a patient with chronic neutropenia. J Periodontol. 1989;60:352-357. https://doi.org/10.1902/jop.1989.60.6.352
  8. Phillips ML, Schwartz BR, Etzioni A, Bayer R, Ochs HD, Paulson JC, Harlan JM. Neutrophil adhesion in leukocyte adhesion deficiency syndrome type 2. J Clin Invest. 1995;96:2898-2906. https://doi.org/10.1172/JCI118361
  9. Sorensen OE, Clemmensen SN, Dahl SL, Ostergaard O, Heegaard NH, Glenthoj A, Nielsen FC, Borregaard N. Papillon-Lefevre syndrome patient reveals species-dependent requirements for neutrophil defenses. J Clin Invest. 2014;124:4539-4548. doi: 10.1172/JCI76009.
  10. Baetz K, Isaaz S, Griffiths GM. Loss of cytotoxic T lymphocyte function in Chediak-Higashi syndrome arises from a secretory defect that prevents lytic granule exocytosis. J Immunol. 1995;154:6122-6131.
  11. Godaly G, Proudfoot AE, Offord RE, Svanborg C, Agace WW. Role of epithelial interleukin-8 (IL-8) and neutrophil IL-8 receptor A in Escherichia coli-induced transuroepithelial neutrophil migration. Infect Immun. 1997;65:3451-3456.
  12. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3:710-720. doi:10.1038/nri1180.
  13. Zhang J, Dong H, Kashket S, Duncan MJ. IL-8 degradation by Porphyromonas gingivalis proteases. Microb Pathog. 1999;26:275-280. https://doi.org/10.1006/mpat.1998.0277
  14. Chung WO, Dommisch H, Yin L, Dale BA. Expression of defensins in gingiva and their role in periodontal health and disease. Curr Pharm Des. 2007;13:3073-3083. doi: 10.2174/138161207782110435.
  15. Page RC. Gingivitis. J Clin Periodontol. 1986;13:345-359. https://doi.org/10.1111/j.1600-051X.1986.tb01471.x
  16. Bachrach G, Altman H, Kolenbrander PE, Chalmers NI, Gabai-Gutner M, Mor A, Friedman M, Steinberg D. Resistance of Porphyromonas gingivalis ATCC 33277 to direct killing by antimicrobial peptides is protease independent. Antimicrob Agents Chemother. 2008;52:638-642. doi: 10.1128/AAC.01271-07.
  17. Ji S, Hyun J, Park E, Lee BL, Kim KK, Choi Y. Susceptibility of various oral bacteria to antimicrobial peptides and to phagocytosis by neutrophils. J Periodontal Res. 2007;42:410-419. doi: 10.1111/j.1600-0765.2006.00962.x.
  18. Wang M, Hajishengallis G. Lipid raft-dependent uptake, signalling and intracellular fate of Porphyromonas gingivalis in mouse macrophages. Cell Microbiol. 2008;10:2029-2042. doi: 10.1111/j.1462-5822.2008.01185.x.
  19. Hajishengallis G, Lambris JD. Microbial manipulation of receptor crosstalk in innate immunity. Nat Rev Immunol. 2011;11:187-200. doi: 10.1038/nri2918.
  20. Ji S, Kim Y, Min BM, Han SH, Choi Y. Innate immune responses of gingival epithelial cells to nonperiodontopathic and periodontopathic bacteria. J Periodontal Res. 2007;42:503-510. doi: 10.1111/j.1600-0765.2007.00974.x.
  21. Van Kessel KPM, Bestebroer J, van Strijp JA. Neutrophil- Mediated Phagocytosis of Staphylococcus aureus. Front Immunol. 2014;5:467. doi: 10.3389/fimmu.2014.00467.
  22. Ji S, Lee JO, Choi Y. Measurement of Bacterial (E. coil) Concentration by Flow Cytometry. Int J Oral Biol. 2005;30:65-69.
  23. Jayaprakash K, Demirel I, Khalaf H, Bengtsson T. The role of phagocytosis, oxidative burst and neutrophil extracellular traps in the interaction between neutrophils and the periodontal pathogen Porphyromonas gingivalis. Mol Oral Microbiol. 2015;30:361-375. doi: 10.1111/omi.12099.
  24. Aderem A. Phagocytosis and the inflammatory response. J Infect Dis. 2003;187 Suppl 2:S340-S345. https://doi.org/10.1086/374747
  25. Hayashi F, Means TK, Luster AD. Toll-like receptors stimulate human neutrophil function. Blood 2003;102: 2660-2669. doi:http://dx.doi.org/10.1182/blood-2003-04-1078.
  26. Koller B, Bals R, Roos D, Korting HC, Griese M, Hartl D. Innate immune receptors on neutrophils and their role in chronic lung disease. Eur J Clin Invest. 2009;39:535-547. doi: 10.1111/j.1365-2362.2009.02145.x.
  27. József L, Khreiss T, Filep JG. CpG motifs in bacterial DNA delay apoptosis of neutrophil granulocytes. FASEB J. 2004;18:1776-1778. doi: 10.1096/fj.04-2048fje.
  28. Shin J, Ji S, Choi Y. Ability of oral bacteria to induce tissue-destructive molecules from human neutrophils. Oral Dis. 2008;14:327-334. doi: 10.1111/j.1601-0825.2007.01382.x.
  29. Zou L, Feng Y, Zhang M, Li Y, Chao W. Nonhematopoietic toll-like receptor 2 contributes to neutrophil and cardiac function impairment during polymicrobial sepsis. Shock. 2011;36:370-380. doi: 10.1097/SHK.0b013e3182279868.