DOI QR코드

DOI QR Code

Hypoxia Inducible Factor-1α Directly Induces the Expression of Receptor Activator of Nuclear Factor-κB Ligand in Chondrocytes

  • Baek, Kyunghwa (Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University) ;
  • Park, Hyun-Jung (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Baek, Jeong-Hwa (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University)
  • 투고 : 2016.02.03
  • 심사 : 2016.03.08
  • 발행 : 2016.03.31

초록

Receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) is an osteoblast/stromal cell-derived essential factor for osteoclastogenesis. During endochondral bone formation, hypertrophic chondrocytes calcify cartilage matrix that is subsequently resorbed by osteoclasts in order to be replaced by new bone. Hypoxia-induced upregulation of RANKL expression has been previously demonstrated in an in vitro system using osteoblasts; however, the involved mechanism remains unclear in chondrocytes. In the present study, we investigated whether hypoxia regulates RANKL expression in ATDC5 cells, a murine chondrogenic cell line, and hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) mediates hypoxia-induced RANKL expression by transactivating the RANKL promoter. The expression levels of RANKL mRNA and protein, as well as HIF-$1{\alpha}$ protein, were significantly increased in ATDC5 cells under hypoxic condition. Constitutively active HIF-$1{\alpha}$ alone significantly increased the levels of RANKL expression under normoxic conditions, whereas dominant negative HIF-$1{\alpha}$ reduced hypoxia-induced RANKL expression. HIF-$1{\alpha}$ increased RANKL promoter reporter activity in a HIF-$1{\alpha}$ binding element-dependent manner in ATDC5 cells. Hypoxia-induced RANKL levels were much higher in differentiated ATDC5 cells, as compared to proliferating ATDC5 cells. These results suggested that under hypoxic conditions, HIF-$1{\alpha}$ mediates induction of RANKL expression in chondrocytes; in addition, hypoxia plays a role in osteoclastogenesis during endochondral bone formation, at least in part, through the induction of RANKL expression in hypertrophic chondrocytes.

키워드

참고문헌

  1. van der Eerden BC, Karperien M, Wit JM. Systemic and local regulation of the growth plate. Endocr Rev. 2003;24:782-801. doi: 10.1210/er.2002-0033.
  2. Usui M, Xing L, Drissi H, Zuscik M, O'Keefe R, Chen D, Boyce BF. Murine and chicken chondrocytes regulate osteoclastogenesis by producing RANKL in response to BMP2. J Bone Miner Res. 2008;23:314-325. doi: 10.1359/jbmr.071025.
  3. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990;345:442-444. doi: 10.1038/345442a0.
  4. Matsuzaki K, Udagawa N, Takahashi N, Yamaguchi K, Yasuda H, Shima N, Morinaga T, Toyama Y, Yabe Y, Higashio K, Suda T. Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochem Biophys Res Commun. 1998;246:199-204. doi: 10.1006/bbrc.1998.8586.
  5. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, HawkinsN, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165-176. doi: 10.1016/S0092-8674(00)81569-X.
  6. Gravallese EM, Manning C, Tsay A, Naito A, Pan C, Amento E, Goldring SR. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 2000;43:250-258. doi: 10.1002/1529-0131(200002)43:2<250::AID-ANR3>3.0.CO;2-P.
  7. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999;402:304-309. doi: 10.1038/46303.
  8. Shimizu S, Shiozawa S, Shiozawa K, Imura S, Fujita T. Quantitative histologic studies on the pathogenesis of periarticular osteoporosis in rheumatoid arthritis. Arthritis Rheum. 1985;28:25-31. doi: 10.1002/art.1780280105.
  9. Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, Weitzmann MN. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood. 2007;109:3839-3848. doi: 10.1182/blood-2006-07-037994.
  10. Kishimoto K, Kitazawa R, Kurosaka M, Maeda S, Kitazawa S. Expression profile of genes related to osteoclastogenesis in mouse growth plate and articular cartilage. Histochem Cell Biol. 2006;125:593-602. doi: 10.1007/s00418-005-0103-z.
  11. Masuyama R, Stockmans I, Torrekens S, Van Looveren R, Maes C, Carmeliet P, Bouillon R, Carmeliet G. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest. 2006;116:3150-3159. doi: 10.1172/JCI29463.
  12. Schipani E. Hypoxia and HIF-1${\alpha}$ in chondrogenesis. Ann N Y Acad Sci. 2006;1068:66-73. doi: 10.1196/annals.1346.009.
  13. Dodd JS, Raleigh JA, Gross TS. Osteocyte hypoxia: a novel mechanotransduction pathway. Am J Physiol. 1999;277:C598-602. https://doi.org/10.1152/ajpcell.1999.277.3.C598
  14. Epari DR, Lienau J, Schell H, Witt F, Duda GN. Pressure, oxygen tension and temperature in the periosteal callus during bone healing - an in vivo study in sheep. Bone. 2008;43:734-739. doi: 10.1016/j.bone.2008.06.007.
  15. Najafipour H, Ferrell WR. Comparison of synovial $PO_2$ and sympathetic vasoconstrictor responses in normal and acutely inflamed rabbit knee joints. Exp Physiol. 1995;80:209-220. doi: 10.1113/expphysiol.1995.sp003841.
  16. Kiaer T, Gronlund J, Sorensen KH. Subchondral $pO_2$, $pCO_2$, pressure, pH, and lactate in human osteoarthritis of the hip. Clin Orthop Relat Res. 1988;229:149-155.
  17. Loboda A, Jozkowicz A, Dulak J. HIF-1 and HIF-2 transcription factors - similar but not identical. Mol Cells. 2010;29:435-442. doi: 10.1007/s10059-010-0067-2.
  18. Knowles HJ, Cleton-Jansen AM, Korsching E, Athanasou NA. Hypoxia-inducible factor regulates osteoclast-mediated bone resorption: role of angiopoietin-like 4. FASEB J. 2010;24:4648-4659. doi: 10.1096/fj.10-162230.
  19. Park HJ, Baek KH, Lee HL, Kwon A, Hwang HR, Qadir AS, Woo KM, Ryoo HM, Baek JH. Hypoxia inducible factor-1${\alpha}$ directly induces the expression of receptor activator of nuclear factor-kappaB ligand in periodontal ligament fibroblasts. Mol Cells. 2011;31:573-578. doi: 10.1007/s10059-011-1055-x.
  20. Steinbach JP, Klumpp A, Wolburg H, Weller M. Inhibition of epidermal growth factor receptor signaling protects human malignant glioma cells from hypoxia-induced cell death. Cancer Res. 2004;64:1575-1578. doi: 10.1158/0008-5472.CAN-03-3775.
  21. Hamrick SE, McQuillen PS, Jiang X, Mu D, Madan A, Ferriero DM. A role for hypoxia-inducible factor-1${\alpha}$ in desferoxamine neuroprotection. Neurosci Lett. 2005;379:96-100. doi: 10.1016/j.neulet.2004.12.080.
  22. Chun YS, Kim MS, Park JW. Oxygen-dependent and -independent regulation of HIF-1${\alpha}$. J Korean Med Sci. 2002;17:581-588. doi: 10.3346/jkms.2002.17.5.581.
  23. Chun YS, Choi E, Kim TY, Kim MS, Park JW. A dominant-negative isoform lacking exons 11 and 12 of the human hypoxia-inducible factor-1${\alpha}$ gene. Biochem J. 2002;362:71-79. doi:10.1042/bj3620071.
  24. Lee HH, Chang CC, Shieh MJ, Wang JP, Chen YT, Young TH, Hung SC. Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect. Sci Rep. 2013;3:2683. doi: 10.1038/srep02683.
  25. Clauss M, Weich H, Breier G, Knies U, Rockl W, Waltenberger J, Risau W. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem. 1996;271:17629-17634. doi: 10.1074/jbc.271.30.17629.
  26. Knowles HJ, Athanasou NA. Hypoxia-inducible factor is expressed in giant cell tumour of bone and mediates paracrine effects of hypoxia on monocyte-osteoclast differentiation via induction of VEGF. J Pathol. 2008;215:56-66. doi: 10.1002/path.2319.
  27. Kwon TG, Zhao X, Yang Q, Li Y, Ge C, Zhao G, Franceschi RT. Physical and functional interactions between Runx2 and HIF-1${\alpha}$ induce vascular endothelial growth factor gene expression. J Cell Biochem. 2011;112:3582-3593. doi: 10.1002/jcb.23289.
  28. Lee SH, Che X, Jeong JH, Choi JY, Lee YJ, Lee YH, Bae SC, Lee YM. Runx2 protein stabilizes hypoxia-inducible factor-1${\alpha}$ through competition with von Hippel-Lindau protein (pVHL) and stimulates angiogenesis in growth plate hypertrophic chondrocytes. J Biol Chem. 2012;287:14760-14771. doi: 10.1074/jbc.M112.340232.
  29. Deckers MM, Karperien M, van der Bent C, Yamashita T, Papapoulos SE, Lowik CW. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology. 2000;141:1667-1674. https://doi.org/10.1210/endo.141.5.7458
  30. Baek K, Park HJ, Baek JH. Hypoxia inducible factor-1${\alpha}$ directly induces the expression of receptor activator of nuclear factor-kappaB ligand in MLO-Y4 osteocytes. Int J Oral Biol. 2015;40:19-25. doi: http://dx.doi.org/10.11620/IJOB.2015.40.1.019.
  31. Fukuoka H, Aoyama M, Miyazawa K, Asai K, Goto S. Hypoxic stress enhances osteoclast differentiation via increasing IGF2 production by non-osteoclastic cells. Biochem Biophys Res Commun. 2005;328:885-894. doi: 10.1016/j.bbrc.2005.01.042.
  32. Martinez-Calatrava MJ, Prieto-Potin I, Roman-Blas JA, Tardio L, Largo R, Herrero-Beaumont G. RANKL synthesized by articular chondrocytes contributes to juxtaarticular bone loss in chronic arthritis. Arthritis Res Ther. 2012;14:R149. doi: 10.1186/ar3884.