DOI QR코드

DOI QR Code

IF 대역 신호처리 시스템 응용을 위한 13비트 100MS/s 0.70㎟ 45nm CMOS ADC

A 13b 100MS/s 0.70㎟ 45nm CMOS ADC for IF-Domain Signal Processing Systems

  • 투고 : 2016.02.24
  • 심사 : 2016.03.04
  • 발행 : 2016.03.25

초록

본 논문에서는 IF 대역의 고속 신호처리 시스템 응용을 위해 높은 동적성능을 가지는 13비트 100MS/s ADC를 제안한다. 제안하는 ADC는 45nm CMOS 공정에서 동작 사양을 최적화하기 위해 4단 파이프라인 구조를 기반으로 하며, 광대역 고속 샘플링 입력단을 가진 SHA 회로는 샘플링 주파수를 상회하는 높은 주파수의 입력신호를 적절히 처리한다. 입력단 SHA 및 MDAC 증폭기는 요구되는 DC 이득 및 넓은 신호범위를 얻기 위해 이득-부스팅 회로 기반의 2단 증폭기 구조를 가지며, 바이어스 회로 및 증폭기에 사용되는 소자는 부정합을 최소화하기 위해 동일한 크기의 단위 소자를 반복적으로 사용하여 설계하였다. 한편, 온-칩 기준전류 및 전압회로에는 배치설계 상에서 별도의 아날로그 전원전압을 사용하여 고속 동작 시 인접 회로 블록에서 발생하는 잡음 및 간섭에 의한 성능저하를 줄였다. 또한, 미세공정상의 잠재적인 불완전성에 의한 성능저하를 완화하기 위해 다양한 아날로그 배치설계 기법을 적용하였으며, 전체 ADC 칩은 $0.70mm^2$의 면적을 차지한다. 시제품 ADC는 45nm CMOS 공정으로 제작되었으며, 측정된 DNL 및 INL은 각각 최대 0.77LSB, 1.57LSB의 값을 가지며, 동적성능은 100MS/s 동작 속도에서 각각 최대 64.2dB의 SNDR과 78.4dB의 SFDR을 보여준다. 본 시제품 ADC는 $2.0V_{PP}$의 넓은 입력신호범위를 처리하는 동시에 IF 대역에서 높은 동적성능을 확보하기 위해 사용공정상의 최소 채널 길이가 아닌 긴 채널 기반의 소자를 사용하며, 2.5V의 아날로그 전압, 2.5V 및 1.1V 두 종류의 디지털 전원전압을 사용하는 조건에서 총 425.0mW의 전력을 소모한다.

This work proposes a 13b 100MS/s 45nm CMOS ADC with a high dynamic performance for IF-domain high-speed signal processing systems based on a four-step pipeline architecture to optimize operating specifications. The SHA employs a wideband high-speed sampling network properly to process high-frequency input signals exceeding a sampling frequency. The SHA and MDACs adopt a two-stage amplifier with a gain-boosting technique to obtain the required high DC gain and the wide signal-swing range, while the amplifier and bias circuits use the same unit-size devices repeatedly to minimize device mismatch. Furthermore, a separate analog power supply voltage for on-chip current and voltage references minimizes performance degradation caused by the undesired noise and interference from adjacent functional blocks during high-speed operation. The proposed ADC occupies an active die area of $0.70mm^2$, based on various process-insensitive layout techniques to minimize the physical process imperfection effects. The prototype ADC in a 45nm CMOS demonstrates a measured DNL and INL within 0.77LSB and 1.57LSB, with a maximum SNDR and SFDR of 64.2dB and 78.4dB at 100MS/s, respectively. The ADC is implemented with long-channel devices rather than minimum channel-length devices available in this CMOS technology to process a wide input range of $2.0V_{PP}$ for the required system and to obtain a high dynamic performance at IF-domain input signal bands. The ADC consumes 425.0mW with a single analog voltage of 2.5V and two digital voltages of 2.5V and 1.1V.

키워드

참고문헌

  1. M. Dillinger, N. Alonistioti, and K. Madani, "Software Defined Radio: Architectures, Systems and Functions," Wiley, 2003.
  2. R. H. Hosking, "Critical Techniques for High Speed A/D Converters in Real-Time Systems," PENTEK, 2010.
  3. H. M. Seo, C. G. Woo, and P. Choi, "Relationship Between ADC Performance and Requirements of Digital-IF Receiver for WCDMA Base-Station," IEEE Trans. on Vehicular Technology, vol. 52, no. 5, pp. 1398-1408, Sep. 2003. https://doi.org/10.1109/TVT.2003.816621
  4. A. M. A. Ali, et al., "A 16-bit 250-MS/s IF Sampling Pipelined ADC With Background Calibration," IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2602-2612, Dec. 2010. https://doi.org/10.1109/JSSC.2010.2073194
  5. T. J. An, et al., "10b 150MS/s $0.4mm^2$ 45nm CMOS ADC Based on Process-Insensitive Amplifiers," Proc. ISCAS, pp. 361-364, May 2013.
  6. Y. H. Kim, et al., "A 10-bit 300MSample/s Pipelined ADC using Time-Interleaved SAR ADC for Front-End Stages," Proc. ISCAS, pp. 4041-4044, May 2010.
  7. P. Huang, et al, "SHA-Less Pipelined ADC With In Situ Background Clock-Skew Calibration," IEEE J. Solid-State Circuits, vol. 46, no. 8, pp. 1893-1903, Aug. 2011. https://doi.org/10.1109/JSSC.2011.2151510
  8. B. Peng, et al., "A 48-mW, 12-bit, 150-MS/s Pipelined ADC with Digital Calibration in 65nm CMOS," in Proc. CICC, pp.1-4, Sept. 2011.
  9. H. W. Chen, at al, "A 10-b 320-MS/s Stage- Gain-Error Self-Calibration Pipeline ADC," IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1334-1343, Jun. 2012. https://doi.org/10.1109/JSSC.2012.2192655
  10. Y. J. Kim, et al., "A 9.43-ENOB 160MS/s 1.2V 65nm CMOS ADC based on multi-stage amplifiers," in Proc. CICC, pp.271-274, Sept. 2009.
  11. Y. J. Kim and S. H. Lee, "A 10-b 120-MS/s 45 nm CMOS ADC using a re-configurable three-stage switched amplifier," Analog Integrated Circuits and Signal Processing, vol. 72, no. 1, pp.75-87, July 2012. https://doi.org/10.1007/s10470-012-9854-3
  12. C. Y. Chen, et al, "A 12-Bit 3 GS/s Pipeline ADC With 0.4 $mm^2$ and 500 mW in 40 nm Digital CMOS," IEEE J. Solid-State Circuits, vol. 47, no. 4, pp. 1013-1021, Apr. 2012. https://doi.org/10.1109/JSSC.2012.2185192
  13. Y. J. Kim, K. H. Lee, M. H. Lee, and S. H. Lee, "A 0.31pJ/conversion-step 12-bit 100MS/s 0.13um CMOS A/D converter for 3G communication system," IEICE Trans. on Electronics, vol. E92-C, no. 9, pp. 1194-1200, Sept. 2009. https://doi.org/10.1587/transele.E92.C.1194
  14. M. M. Ahmadi, "A New Modeling and Optimization of Gain-Boosted Cascode Amplifier for High-Speed and Low-Voltage Applications," IEEE Trans. Circuits Syst. II, vol. 53, no. 3, pp. 169-173, Mar. 2006. https://doi.org/10.1109/TCSII.2005.858493
  15. K. Bult and J. G. M. Geelen, "A Fast-Settling CMOS Op Amp for SC Circuits with 90-dB DC Gain," IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1379-1384, Dec. 1990. https://doi.org/10.1109/4.62165
  16. C. Zemke, et al., "Numerical analysis of parasitic effects in deep submicron technologies", Synopsys Users Group, 2005.
  17. J. Watts, et al., "Netlisting and modeling well-proximity effects," IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2179-2186, Sept. 2006. https://doi.org/10.1109/TED.2006.880176
  18. P. G. Drennan, et al., "Implications of proximity effects for analog design," in Proc. CICC, pp. 169-176, Sept. 2006.
  19. Seung-Jae Park, Byeong-Woo Koo, and Seung-Hoon Lee, "A 12b 100MS/s 1V 24mW 0.13um CMOS ADC for Low-Power Mobile Applications," Journal of the Institute of Electronics and Information Engineers, vol. 47, SD, no. 8, pp. 56-63, Aug. 2010.
  20. J. S. Park, et al, "A 12b 100 MS/s Three-Step Hybrid Pipeline ADC Based on Time-Interleaved SAR ADCs," Journal of Semiconductor Technology and Science, vol. 14, no. 2, pp. 189-197, Apr. 2014. https://doi.org/10.5573/JSTS.2014.14.2.189
  21. Tai-Ji An, et al, "A 1.1V 12b 100MS/s $0.43mm^2$ ADC based on a low-voltage gain-boosting amplifier in a 45nm CMOS technology," Journal of the Institute of Electronics and Information Engineers, vol. 50, SD, no. 7, pp. 122-130, Jul. 2013. https://doi.org/10.5573/ieek.2013.50.7.122
  22. C. Jack, B. Lane, and H. S. Lee, "A zero-crossing based 12b 100MS/s pipeline ADC with decision boundary gap estimation calibration," in Symp. VLSI Circuits Dig. Tech. Papers, pp. 237-238, June 2010.
  23. D. H. Hwang, et al, "A Range-Scaled 13b 100MS/s $0.13{\mu}m$ CMOS SHA-Free ADC Based on a Single Reference," Journal of Semiconductor Technology and Science, vol. 13, no. 2, pp. 98-107, Apr. 2013. https://doi.org/10.5573/JSTS.2013.13.2.98
  24. A. Panigada and I. Galton, "A 130mW 100MS/s Pipelined ADC with 69dB SNDR Enabled by Digital Harmonic Distortion Correction," IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3314- 3328, Dec. 2009. https://doi.org/10.1109/JSSC.2009.2032637
  25. P. Bogner, F. Kuttner, C. Kropf, T. Hartig, M. Burian, and H. Eul, "A 14b 100MS/s Digitally Self-Calibrated Pipelined ADC in $0.13{\mu}m$ CMOS," in ISSCC Dig. Tech Paper, pp. 224-225, Feb. 2006.
  26. Z. Wang, M. Wang, W. Gu, C. Chen, F. Ye, and J. Pen, "A High-Linearity Pipelined ADC With Opamp Split-Sharing in a Combined Front-End of S/H and MDAC1," IEEE Trans. Circuits Syst. I, vol. 60, no. 11, pp. 2834-2844, Nov. 2013. https://doi.org/10.1109/TCSI.2013.2252643