DOI QR코드

DOI QR Code

Preparation and Characterization of Low Density Polyethylene (LDPE) and Flower-like Zinc Oxide (FZnO) Composite Films

저밀도폴리에틸렌(LDPE)/꽃 모양 산화아연(FZnO) 복합필름의 제조 및 물성 분석

  • Kim, Insoo (Department of Packaging, Yonsei University) ;
  • Lee, Hojun (Department of Packaging, Yonsei University) ;
  • Kim, Dowan (Department of Packaging, Yonsei University) ;
  • Seo, Jongchul (Department of Packaging, Yonsei University)
  • 김인수 (연세대학교 과학기술대학 패키징학과) ;
  • 이호준 (연세대학교 과학기술대학 패키징학과) ;
  • 김도완 (연세대학교 과학기술대학 패키징학과) ;
  • 서종철 (연세대학교 과학기술대학 패키징학과)
  • Received : 2016.11.29
  • Accepted : 2016.12.26
  • Published : 2016.12.31

Abstract

Flower-like zinc oxide (FZnO) was successfully synthesized via a sonochemical process. The chemical structure, morphology, and antimicrobial properties of as- prepared FZnO were investigated. Additionally, pure LDPE and five different LDPE/FZnO composite films were prepared with different FZnO content by using a twin screw extruder. According to the FTIR and SEM analyses, there exists weak interfacial interaction between LDPE and FZnO. Compared with pure LDPE, the LDPE/FZnO composite films showed UV barrier and enhanced antimicrobial activity against Escherichia coli (E. coli) as a Gram-negative micro-organism and Staphylococcus aureus (S. aureus) as a Gram-positive micro-organism. To enhance the interfacial interaction and good dispersion of FZnO into the LDPE matrix, and resultantly to such as UV barrier and antimicrobial properties of LDPE/FZnO composite films as the packaging materials, further efforts are required.

본 연구에서는 초음파합성법을 이용하여 항균성과 자외선 차단성이 있는 삼차원 꽃 모양의 구조를 가진 FZnO를 제조하였다. 제조한 FZnO 분말은 E. coli와 S. aureus에 대해 99.9%와 97.8%의 항균력을 나타내었다. 제조한 LDPE/FZnO 복합필름에 대한 FTIR 분석과 SEM 분석결과 LDPE/FZnO 복합필름이 성공적으로 만들어졌지만, LDPE 매트릭스와 FZnO 분말과의 상호작용은 약한 것으로 확인되었다. FZnO 함량이 증가할수록 자외선 차단성이 증가하는 것을 확인할 수 있었다. 또한, FZnO함량이 증가할수록 E. coli와 S. aureus에 대한 항균성이 증가하는 것을 확인하였다. 하지만, 복합필름 내 물성 극대화 및 포장소재로 적용을 위해서는 FZnO 분말과 고분자와의 혼화성 향상에 대한 추가적인 연구가 필요하다는 것을 확인하였다.

Keywords

References

  1. Espitia, P. J. P., Soares, N. D. F. F., Coimbra, J. S. D. R., Andrade, N. J. D., Cruz, R. S., and Medeiros, E. A. A. 2012. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5: 1447-1464. https://doi.org/10.1007/s11947-012-0797-6
  2. Kim, D., Lee, S., Kwon, H., and Seo, J. 2015. Water resistance and antimicrobial properties of poly(vinyl alcohol) composite films containing surface-modified tetrapod zinc oxide whiskers. Macromol. Res. 23: 1134-1143. https://doi.org/10.1007/s13233-015-3148-4
  3. Choi, H. Y. and Lee, Y. S. 2013. Characteristics of moistureabsorbing film impregnated with synthesized attapulgite with acrylamide and its effect on the quality of seasoned laver during storage. J. Food Eng. 829-839.
  4. Tankhiwale, R. and Bajpai, S. K. 2012. Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging, Colloids. Surf. B. Biointerfaces. 90: 16-20. https://doi.org/10.1016/j.colsurfb.2011.09.031
  5. Lee, J., Easteal, A. J., Pal, U., and Bhattacharyya, D. 2009. Evolution of ZnO nanostructures in sol-gel synthesis. Curr. Appl. Phys. 9: 792-796. https://doi.org/10.1016/j.cap.2008.07.018
  6. Lin, C.-C. and Li, Y.-Y. 2009. Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dehydrate. Mater. Chem. Phys. 113: 334-337. https://doi.org/10.1016/j.matchemphys.2008.07.070
  7. Bhatte, K. D., Sawant, D. N., Pinjari, D. V., Pandit, A. B., and Bhanage, B. M. 2012. One pot green synthesis of nano sized zinc oxide by sonochemical method. Mater. Lett. 77: 93-95. https://doi.org/10.1016/j.matlet.2012.03.012
  8. Yu, H., Fan. H., Wang, X., Wang, J., Cheng, P., and Zhang, X. 2014. Template-free sonochemical synthesis of flower-like ZnO nanostructures. Phys. Lett. A. 78: 3315-3318.
  9. Zak, A. K., Majid, W. H. A., Wang, H. Z., Yousefi, R., Golsheikh, A. M., and Ren, Z. F. 2013. Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrason. Sonochem. 20: 395-400. https://doi.org/10.1016/j.ultsonch.2012.07.001
  10. Lu, Y., Wang, L., Wang, D., Xie, T., Chen, L., and Lin, Y. 2014. A comparative study on plate-like and flower-like ZnO nanocrystals surface photovoltate property and photocatalytic activity. Mater. Chem. Phys. 129: 281-287.
  11. Mishra, P., Yadav, R. S., and Pandey, A. C. 2010. Growth mechanism and photoluminescence property of flower-like ZnO nanostructures synthesized by starch-assisted sonochemical method. Ultrason. Sonochem. 17: 560-565. https://doi.org/10.1016/j.ultsonch.2009.10.017
  12. Huang, J., Wu, Y., Gu, Y. C., Zhai, M., Yu, K., Yang, M., and Liu, J. 2010. Large-scale synthesis of flower like ZnO nanostructure by a simple chemical solution route and its gassensing property. Sens. Actuators B Chem. 146: 206-212. https://doi.org/10.1016/j.snb.2010.02.052
  13. Shi, Y., Zhu, C., Wang, L., Zhao, C., Li, W., Fung, K. K., Ma, T., Hagfeldt, A., and Wang, N. 2013. Ultrarapid sonochemical synthesis of ZnO hierarchical structure: From fundamental research to high efficiencies up to 6.42% for quasisolid dye-sensitized solar cells. Chem. Mater. 25: 1000-1012. https://doi.org/10.1021/cm400220q
  14. Kim, D., Kim, I., Seo, J., and Seo, J. 2012. Preparation of polyurushiol(PUOH) based on urushiol and properties of LDPE/PUOH composite films. J. App. Chem. Eng. 23: 546-533.
  15. Korea Standard Information Center KS J 4206.
  16. Japanese Industrial Standard JIS Z 2801, 2000.
  17. Wahab, R., Ansari, S. G., Kim, Y. S., Song, M., and Shin, H. S. 2009. The role of pH variation on the growth of zinc oxide nanostructures. Appl. Surf. Sci. 255, 4891-4896. https://doi.org/10.1016/j.apsusc.2008.12.037
  18. Ishioka, T., Shibata, Y., Takahashi, M., Kanesaka, I., Kitagawa, Y., and Nakamura, K. T. 1998. Vibrational spectra and structures of zinc carboxylates I. Zinc acetate dehydrate. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 54: 1827-1836. https://doi.org/10.1016/S1386-1425(98)00063-8
  19. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., and Mohamad, D. 2015. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7: 219-242. https://doi.org/10.1007/s40820-015-0040-x
  20. Tam, K. H., Djurisic, A. B., Chan, C. M. N., Xi, Y. Y., Tse, C. W., Leung, Y. H., Chan, W. K., Leung, F. C. C., and Au, F. C. C. 2008. Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films. 516: 6167- 6174. https://doi.org/10.1016/j.tsf.2007.11.081
  21. Alavi, S., Thomas, S., Sandeep, K. P., Kalarikkal, N., Varghese, J., and Yaragalla, S. 2015. Polymers for packaging applications. Apple Academic Press Inc, Oakville, Toronto, Canada and Waretown, Newjersey, USA, 4-70.
  22. Gulmine, J. V., Janissek, P. R., Heise, H. M., and Akcelrud, L. 2002. Polyethylene characterization by FTIR. Polym. Test. 21: 557-563. https://doi.org/10.1016/S0142-9418(01)00124-6
  23. Munaro, M. and Akcelrud, L. 2008. Correlations between composition and crystallinity of LDPE/HDPE blends. J. Polym. Res. 15: 83-88. https://doi.org/10.1007/s10965-007-9146-2
  24. Jeon, G., Park, S.-I., Seo, J., Seo, K., Han, H., and You, Y. C. 2011. Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite Films. Appl. Chem. Eng. 22: 610-616.
  25. Chung, Y. and Kang, W. 2006. Preparation of ZnO nanoparticles by laser ablation of dispersed ZnO powder in solution. J. Korean Chem. Soc. 50: 440-446. https://doi.org/10.5012/jkcs.2006.50.6.440

Cited by

  1. 산화분해촉매를 함유한 rPP/ZnO 나노컴포지트 유연식품포장필름 제조 및 물성 특성 연구 vol.24, pp.1, 2016, https://doi.org/10.20909/kopast.2018.24.1.1