DOI QR코드

DOI QR Code

Evaluation of Accuracy About 2D vs 3D Real-Time Position Management System Based on Couch Rotation when non-Coplanar Respiratory Gated Radiation Therapy

비동일평면 호흡동조방사선치료 시 테이블 회전에 따른 2D vs 3D Real-Time Position Management 시스템의 정확성 평가

  • Kwon, Kyung-Tae (Department of Radiologic Technology, Dongnam Health University) ;
  • Kim, Jung-Soo (Department of Radiologic Technology, Dongnam Health University) ;
  • Sim, Hyun-Sun (Department of Radiologic Science, College of Health Sciences, Korea University) ;
  • Min, Jung-Whan (Department of Radiological Technology, Shingu University College) ;
  • Son, Soon-Yong (Department of Radiotechnology, Wonkwang Health Science University) ;
  • Han, Dong-Kyoon (Department of Radiologic Science, College of Health Sciences, EulJi University)
  • 권경태 (동남보건대학교 방사선과) ;
  • 김정수 (동남보건대학교 방사선과) ;
  • 심현선 (고려대학교 보건과학대학 방사선학과) ;
  • 민정환 (신구대학교 방사선과) ;
  • 손순룡 (원광보건대학교 방사선과) ;
  • 한동균 (을지대학교 방사선학과)
  • Received : 2016.11.17
  • Accepted : 2016.12.06
  • Published : 2016.12.31

Abstract

Because of non-coplanar therapy with couch rotation in respiratory gated radiation therapy, the recognition of marker movement due to the change in the distance between the infrared camera and the marker due to the rotation of the couch is called RPM (Real-time The purpose of this paper is to evaluate the accuracy of motion reflections (baseline changes) of 2D gating configuration (two dot marker block) and 3D gating configuration (six dot marker block). The motion was measured by varying the couch angle in the clockwise and counterclockwise directions by $10^{\circ}$ in the 2D gating configuration. In the 3D gating configuration, the couch angle was changed by $10^{\circ}$ in the clockwise direction and compared with the baseline at the reference $0^{\circ}$. The reference amplitude was 1.173 to 1.165, the couch angle at $20^{\circ}$ was 1.132, and the couch angle at $1.0^{\circ}$ was 1.083. At $350^{\circ}$ counterclockwise, the reference amplitude was 1.168 to 1.157, the couch angle at $340^{\circ}$ was 1.124, and the couch angle at $330^{\circ}$ was 1.079. In this study, the phantom is used to quantitatively evaluate the value of the amplitude according to couch change.

호흡동조방사선치료에서 비동일 평면치료는 테이블의 회전이 있기 때문에 테이블의 회전에 따른 적외선 카메라와 마커 사이의 거리 변화로 인하여 마커 움직임의 인식을 Real-time Position Management 시스템의 two dot 마커와 six dot 마커의 움직임 반영의 정확성을 평가하고자 한다. 움직임을 평가는 two dot 마커에서 테이블 각도를 시계방향, 반시계방향으로 각 $10^{\circ}$씩 변화하여 측정하였으며, six dot 마커에서도 테이블 각도를 시계방향으로 각 $10^{\circ}$ 변화하여 기준 $0^{\circ}$에서의 기준과 비교하였을 때 기준 진폭 1.173에서 1.165, 테이블 각도 $20^{\circ}$에서는 1.132, 테이블 각도 $30^{\circ}$에서는 1.083의 진폭값으로 나타났다. 반시계방향으로 $350^{\circ}$에서는 기준 진폭 1.168에서 1.157, 테이블 각도 $340^{\circ}$에서는 1.124, 테이블 각도 $330^{\circ}$에서는 1.079 진폭값으로 나타났다. 본 연구에서는 팬톰을 이용하여 테이블 변화에 따른 진폭의 값을 정량적으로 평가한 점에 학술적 의미를 두고자 한다.

Keywords

References

  1. Wink NM, Chao M, Antony J, Xing L : Individualized gating windows based on four-dimensional CT information for respiration-gated radiotherapy. Phys Med Biol, 53, 165-175, 2008 https://doi.org/10.1088/0031-9155/53/1/011
  2. Ahmed RS, Shen S, Ove R, Duan J, Fiveash JB, Russo SM : Intensity modulation with respiratory gating for radiotherapy of the pleural space, Med Dosim, 32, 16-22, 2007 https://doi.org/10.1016/j.meddos.2006.10.002
  3. Kupelian PA, Lee C, Langen KM et. al. : Evaluation of image-guidance strategies in the treatment of localized prostate cancer, Int J Radiat Oncol Biol Phys, 70, 1151-1157, 2008 https://doi.org/10.1016/j.ijrobp.2007.07.2371
  4. Seppenwoolde Y, Shirato H, Kitamura K et. al. : Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy, Int J Radiat Oncol Biol Phys, 53, 822-834, 2002 https://doi.org/10.1016/S0360-3016(02)02803-1
  5. Bak J, Jeong K, Keum KC, Park SW : On-line image guided radiation therapy using Cone-Beam CT (CBCT), J Korean Soc Ther Radiol Oncol, 24, 294-299, 2006
  6. Korin HW, Ehman RL : Riedere Respiratory kinematics of the upper abdominal organs: a quantitative study, Magn Reson Med, 23, 172-178, 1992 https://doi.org/10.1002/mrm.1910230118
  7. Eunsung Jang, Sooman Kang, Cholsoo Lee, Se-Sik Kang : Accuracy Evaluation of Tumor Therapy during Respiratory Gated Radiation Therapy, The journal of KSRT, 22(2), 113-122, 2010
  8. Yang Hoon Lee, Jae Hee Lee, Suk Hyun Yoo : Production and Assessing Usefulness of the Moving Phantom for Respiration Gated Radiotherapy, The journal of KSRT, 22(2), 135-144, 2010
  9. Ono T, Takegawa H, Ageishi T et al. : Respiratory monitoring with an acceleration sensor. Phys Med Biol, 2011 Oct 7;56(19):6279-89, Epub 2011 https://doi.org/10.1088/0031-9155/56/19/008
  10. Tachibana H, Kitamura N, Ito Y et al. : Management of the baseline shift using a new and simple method for respiratory-gated radiation therapy: detectability and effectiveness of a flexible monitoring system, Med Phys, Jul;38(7):3971-80, 2011 https://doi.org/10.1118/1.3598434
  11. Hu W, Xu A, Li G et al. : A real-time respiration position based passive breath gating equipment for gated radiotherapy: a preclinical evaluation, Med Phys, Mar;39(3):1345-50, 2012 https://doi.org/10.1118/1.3678986
  12. Cui G, Gopalan S, Yamamoto T. et al. : Commissioning and quality assurance for a respiratory training system based on audiovisual biofeedback, J Appl Clin Med Phys, Jul 12;11(4), 3262, 2010
  13. Xia J1, Siochi RA. : A real-time respiratory motion monitoring system using KINECT: proof of concept, Med Phys, May;39(5):2682-5, doi: 10.1118/1.4704644, 2012
  14. Oh SA, Yea JW, Kim SK : Statistical Determination of the Gating Windows for Respiratory-Gated Radiotherapy Using a Visible Guiding System, PLoS One, 26;11(5):e0156357. doi: 10.1371/journal.pone0156357, 2016
  15. Hamlet SM, Haggerty CM. : An interactive videogame designed to improve respiratory navigator efficiency in children undergoing cardiovascular magnetic resonance. J Cardiovasc Magn Reson, 6;18(1):54, doi: 10.1186/s12968-016-0272-z, 2016