DOI QR코드

DOI QR Code

Monte Carlo Simulation for Development of Diagnostic Multileaf Collimator

진단용 다엽콜리메이터 개발을 위한 몬테칼로 시뮬레이션 연구

  • Han, Su-Chul (Division of Medical Radiation Equipment, Korea Institute of Radiological and Medical Sciences) ;
  • Park, Seungwoo (Division of Medical Radiation Equipment, Korea Institute of Radiological and Medical Sciences)
  • 한수철 (한국원자력의학원 방사선기기부) ;
  • 박승우 (한국원자력의학원 방사선기기부)
  • Received : 2016.10.30
  • Accepted : 2016.11.28
  • Published : 2016.12.31

Abstract

The diagnostic multileaf collimator(MLC) was designed for patient dose reduction in diagnostic radiography We used monte carlo simulation code (MCNPX, LANL, USA) to evaluate efficiency of shielding material for making diagnostic MLC as preliminary study. The diagnostic radiography unit was designed using SRS-78 program according to tube voltage (80,100,120 kVp) and acquired energy spectrums. The shielding material was SKD11 alloy tool steel that is composed of 1.6% carbon(C), 0.4% silicon(Si), 0.6% manganese (Mn), 5% chromium (Cr), 1% molybdenum(Mo) and vanadium(V). The density of it was $7.89g/cm^3$.Using tally card 6, we calculated the shielding efficiency of MLC according to tube voltage. The results was that 98.3% (80 kVp), 95.7 %(100 kVp), 93.6% (120 kVp). We certified efficiency of diagnostic MLC fabricated from SKD11 alloy steel by monte calro simulation. Based on the results, we designed the diagnostic MLC and will develop the diagnostic MLC for reduction of patient dose in diagnostic radiography.

진단방사선 검사 시 환자선량을 감소하기 위한 목적으로 진단용 다엽콜리메이터를 제작하고자 하며, 제작 전 사전연구로서 진단용 다엽콜리메이터에 사용되는 차폐물질 및 차폐효율에 대한 몬테칼로 시뮬레이션을 수행하였다. 몬테칼로 시뮬레이션 코드(MCNPX, LANL, USA)를 이용하여 진단방사선 기기(ReX-650R, Listem, Korea)을 모델링하기 위하여, SRS-78 프로그램을 이용하여 관전압(80, 100, 120 kVp)에 따라 에너지 스펙트럼을 획득하였다. 진단용 다엽콜리메이터의 제작을 위하여 사용된 재료는 SKD-11(탄소 : 1.6%, 규소 : 0.4%, 망간 : 0.6%, 크롬 : 5%, 몰리브덴 : 1%, 바나듐 : 0.3%, 밀도: $7.87g/cm^3$)이며 이를 진단방사선 기기에 진단용 다엽콜리메이터($10{\times}0.5{\times}0.5cm^3$, 좌우 20개씩) 형태로 전산 모사하였다. 진단용 다엽콜리메이터의 차폐효율을 확인하기 위하여 MCNPX 코드의 tally6을 이용하여 에너지별로 차폐효율을 계산하였다. 에너지에 따른 차폐효율은 80 kVp 일 때, 98.3% 차폐되었으며, 100 kVp는 95.7%, 마지막으로 120 kVp는 93.6%가 차폐되는 것을 확인할 수 있었다. 본 연구결과를 기반으로 MLC형태 및, 누설선량에 대한 연구를 진행하여 진단방사선 기기에서 사용 가능한 진단용 다엽콜리메이터 개발에 필요한 정보를 제공할 수 있을 것이라 사료된다.

Keywords

References

  1. Short C. P, Fannnin N. F, Malone L, Thornton J, Brennan P. and Lee M. J: Thyroid dose during neuro- interventional procedure: dose lead shielding reduce the dose ? Cardiovascular Interv. Radiol. 30, 922-927, 2007 https://doi.org/10.1007/s00270-007-9093-7
  2. Sandborng M, Rossitti S, and Perrersson H: Local skin and eye lens equivalent doses in interventinal neuro-radiology. Eur. Radiol. 20, 725-733, 2010 https://doi.org/10.1007/s00330-009-1598-9
  3. Hopper K. D, Neuman J. D, King S. H. and Kunselman A. R: Radioprotection to the eye during CT scanning. SJNR Am J Neuroradilo. 22, 1194-1198, 2001
  4. McLanghlim D. J. and Moongy R. B: Dose reduction to radiosensitive tissues in CT: do commercially available shields meet the user' needs ? Clinical Radiology. 59, 446-450, 2004 https://doi.org/10.1016/j.crad.2003.10.016
  5. Shortt C. P. Malone L, Thornton J, Brennan P and Lee M. J: Radiation protection to the eyes and thyroids during diagnostic cerebral angiography: a phantom study. J Med Imaging Radiat. Oncol., 52, 365-369, 2008 https://doi.org/10.1111/j.1440-1673.2008.01970.x
  6. Su chul Han and Soon Chan Kwon: Radiation dose and reduction to the critical organ with bismuth shielding during endovascular coil embolisation for cerebral aneurysms. Radiat. Prot. Dosimetry. 156, 364-371, 2013 https://doi.org/10.1093/rpd/nct070
  7. Prins R, Dauer L. T, Colosi D. C, Quinn B, Kleiman N, Bohle G, Holohan B, Al-Najjar Fernandez T, Bonvento M et al: Significiant reduction in dental cone beam computed tomography(CBCT) eye dose through the use of leaded glasses. Oral Surg Oral MEd Oral Pathol Oral Radiol Ended. 112, 502-507, 2011 https://doi.org/10.1016/j.tripleo.2011.04.041
  8. Gray J. E, Archer B, Butler P. F, Hobbs, B. B, Mettler F. A, Pizzutiello R. J et al: Reference values for diagnostic radiology: application and impact. Radiology. 235, 354-358, 2005 https://doi.org/10.1148/radiol.2352020016
  9. IAEA. Radiological protection for medical exposure to ionizing radiation. IAEA Safe Standards Seres, Safety Guide No RS-G-1.5. International Atomic Energy Agency, 2002
  10. Gijbels F, Sanderink G, Wyatt J. and Van Dam J: Radiation doses of collimated vs non-collimated cephalometric exposure. Dentomaxillofac. Radiol., 32, 128-133, 2003 https://doi.org/10.1259/dmfr/33233723
  11. Boram Lee, Gwisoon shin, Sunjung Kang et al: Dose evaluation of selective collimation effect in cephalography by measurement and Monte Carlo simulation. Radiat. Prot. Dosimetry. 148, 58-64, 2011