DOI QR코드

DOI QR Code

산업도금폐수 처리에 사용된 탄소폼 흡착소재의 중금속 탈착 및 회수에 관한 연구

Study on Heavy Metal Desorption and Recovery of the Carbon Foam used in Industrial Plating Wastewater Treatment as Adsorbent

  • 이다영 (한국과학기술연구원 물자원순환연구단) ;
  • 이창구 (한국과학기술연구원 물자원순환연구단) ;
  • 김대운 (한국스미더스오아시스 기술연구소) ;
  • 박상현 (한국스미더스오아시스 기술연구소) ;
  • 권지향 (건국대학교 환경공학과) ;
  • 이상협 (한국과학기술연구원 물자원순환연구단)
  • Lee, Da-Young (Center for Water Resource Cycle Research, Korea Institute of Science and Technology) ;
  • Lee, Chang-Gu (Center for Water Resource Cycle Research, Korea Institute of Science and Technology) ;
  • Kim, Dae-Woon (R&D Center, Smithers-Oasis Korea) ;
  • Park, Sang-Hyen (R&D Center, Smithers-Oasis Korea) ;
  • Kweon, Ji-Hyang (Department of Environmental Engineering, Konkuk University) ;
  • Lee, Sang-Hyup (Center for Water Resource Cycle Research, Korea Institute of Science and Technology)
  • 투고 : 2016.09.22
  • 심사 : 2016.11.30
  • 발행 : 2016.11.30

초록

본 연구에서는 탄소폼 흡착소재를 이용하여 산업도금폐수로부터 중금속을 흡착 제거한 후 탈착용액을 이용하여 제거된 중금속을 용출하고 회수하는 과정의 특성을 평가해 보고자 하였다. 용액의 조성에 따른 복합 중금속의 탈착 특성을 살펴본 결과 증류수 조건에서는 용출이 관측되지 않았으며, 탈착용액으로 HCl과 $H_2SO_4 $를 이용한 경우 높은 중금속 농도를 나타내었다. 탈착 용액을 이용함과 더불어 물리적 기술인 초음파 처리를 이용한 경우 중금속의 용출이 증진되는 것을 확인하였으며, 초음파 장치의 출력이 높고 반응 시간이 길수록 효율도 증가하는 것으로 나타났다. 탄소폼 흡착소재를 구리도금 세척수 처리에 적용시켜본 결과 200 반응기부피(Bed volume) 동안 안정적인 제거 성능을 나타내었으며, 흡착된 구리는 탈착용액을 이용하여 용출시킨 후 직류 전원 장치를 이용하여 회수할 수 있었다. 또한 구리가 회수된 탈착용액은 재이용 효율은 84.2%로 나타났다.

We investigated the characteristics of heavy metal desorption and recovery from carbon foam after plating wastewater treatment. The heavy metal desorption depends on solution chemistry because desorption occurred in HCl and $H_2SO_4 $ solution but did not occur in distilled water. Heavy metal desorption efficiency was increased using ultrasonication with desorption solution. The higher ultrasonic power and the longer reaction time improve efficiency. The copper plating rinse solution was treated reliably by carbon foam adsorbent during 200 bed volume. The adsorbed copper was dissolved using desorption solution and recovered by DC power supply. After copper recovery, the reuse efficiency of desorption solution was 84.2%.

키워드

참고문헌

  1. Mishra, S. P., "Adsorption-desorption of heavy metal ions," Cur. Sci., 107, 601-612(2014).
  2. Malamis, S., Katsou, E., Kosanovic, T. and Haralambous, K. J., "Combined adsorption and ultrafiltration processes employed for the removal of pollutants from metal plating wastewater," Sep. Sci. Technol., 47, 983-996(2012). https://doi.org/10.1080/01496395.2011.645983
  3. Lee, C. G., Park, J. A., Choi, J. W., Ko, S. O. and Lee, S. H., "Removal and recovery of Cr(VI) from industrial plating wastewater using fibrous anion exchanger," Water Air Soil Pollut., 227, 287-11(2016). https://doi.org/10.1007/s11270-016-2992-y
  4. Gautam, R. K., Mudhoo, A., Lofrano, G. and Chattopadhyaya, M. C., "Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration," J. Environ. Chem. Eng., 2, 239-259(2014). https://doi.org/10.1016/j.jece.2013.12.019
  5. Lata, S., Singh, P. K. and Samadder, S. R., "Regeneration of adsorbents and recovery of heavy metals: a review," Int. J. Environ. Sci. Technol., 12, 1461-1478(2015). https://doi.org/10.1007/s13762-014-0714-9
  6. Tondi, G., Pizzi, A., Delmotte, L., Parmentier, J. and Gadiou, R., "Chemical activation of tanninefuranic carbon foams," Ind. Crop. Prod., 31, 327-334(2010). https://doi.org/10.1016/j.indcrop.2009.11.013
  7. Liu, S., Huang, Z. and Wang, R., "A carbon foam with a bimodal microemesoporous structure prepared from larch sawdust for the gas-phase toluene adsorption," Mater. Res. Bull., 48, 2437-2441(2013). https://doi.org/10.1016/j.materresbull.2013.02.069
  8. Burke, D. M., Morris, M. A. and Holmes, J. D., "Chemical oxidation of mesoporous carbon foams for lead ion adsorption," Sep. Purif. Technol., 104, 150-159(2013). https://doi.org/10.1016/j.seppur.2012.10.049
  9. Lee, C. G., Jeon, J. W., Hwang, M. J., Ahn, K. H., Park, C., Choi, J. W. and Lee, S. H., "Lead and copper removal from aqueous solutions using carbon foam derived from phenol resin," Chemosphere, 130, 59-65(2015). https://doi.org/10.1016/j.chemosphere.2015.02.055
  10. Lee, C. G., Song, M. K., Ryu, J. C., Park, C., Choi, J. W. and Lee, S. H., "Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent," Chemosphere, 153, 1-9(2016). https://doi.org/10.1016/j.chemosphere.2016.03.034
  11. Webb, P. A., "Introduction to chemical adsorption analytical techniques and their applications to catalysis," MIC Technical Publications, Micromeritics Instrument Corp. (2003).
  12. Sar, P., Kazy, S. K., Asthana, P. K. and Singh, S. P., "Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa," Int. Biodeterior. Biodegrad., 44, 101-110(1999). https://doi.org/10.1016/S0964-8305(99)00064-5
  13. Gupta, V. K. and Rastogi, A., "Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp. - a comparative study," Colloid Surf. B-Biointerfaces, 64, 170-178(2008). https://doi.org/10.1016/j.colsurfb.2008.01.019
  14. Choi, W.-J., Park, K.-M., Yoon, B.-G., Kim, M.-C. and Oh, K.-J., "Recovery of Presource from Sewage Sludge by a Struvite-forming Method," Korean Soc. Environ. Eng., 31(7), 557-564(2009).
  15. Chen, F., Tan, M., Ma, J., Li, G. and Qu, J., "Restoration of manufactured gas plant site soil through combined ultrasoundassisted soil washing and bioaugmentation," Chemosphere, 146, 289-299(2016). https://doi.org/10.1016/j.chemosphere.2015.12.050
  16. Chen, F., Yang, B., Ma, J., Qu, J. and Liu, G., "Decontamination of electronic waste-polluted soil by ultrasound-assisted soil washing," Environ. Sci. Pollut. Res., Published online (2016).
  17. Ye, M., Sun, M., Liu, Z., Ni, N., Chen, Y., Gu, C., Kengara, F. O., Li, H. and Jiang, X., "Evaluation of enhanced soil washing process and phytoremediation with maize oil, carboxymethyl-b-cyclodextrin, and vetiver grass for the recovery of organochlorine pesticides and heavy metals from a pesticide factory site," J. Environ. Manage., 141, 161-168(2014). https://doi.org/10.1016/j.jenvman.2014.03.025
  18. Li, G., Zhao, Z., Liu, J. and Jiang, G., "Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica," J. Hazard. Mater., 192, 277-283(2011).
  19. Zou, Z., Qiu, R., Zhang, W., Dong, H., Zhao, Z., Zhang, T., Wei, X. and Cai, X., "The study of operating variables in soil washing with EDTA," Environ. Pollut., 157, 229-236 (2009). https://doi.org/10.1016/j.envpol.2008.07.009
  20. Korkut, O., Sayan, E., Lacin, O. and Bayrak, B., "Investigation of adsorption and ultrasound assisted desorption of lead (II) and copper (II) on local bentonite: a modelling study," Desalination, 259, 243-248(2010). https://doi.org/10.1016/j.desal.2010.03.045
  21. Lacin, O., Bayrak, B., Korkut, O. and Sayan, E., "Modeling of adsorption and ultrasonic desorption of cadmium(II) and zinc(II) on local bentonite," J. Colloid Interface Sci., 292, 330-335(2005). https://doi.org/10.1016/j.jcis.2005.05.092
  22. Meng, R. and Yu, X., "Investigation of ultrasound assisted regeneration of Ni. bentonite with response surface methodology (RSM)," Appl. Clay Sci., 54, 112-117(2011). https://doi.org/10.1016/j.clay.2011.06.015
  23. Zhang, W., Li, X., Yang, Z., Tang, X., Ma, Y., Li, M., Hu, N., Wei, H. and Zhang, Y., "In situ preparation of cubic $Cu_2O$-RGO nanocomposites for enhanced visible-light degradation of methyl orange," Nanotechnology, 27, 265703 (2016). https://doi.org/10.1088/0957-4484/27/26/265703