DOI QR코드

DOI QR Code

Development of SCAR Marker for Identifying Male Trees of Ginkgo biloba using Multiplex PCR

Multiplex PCR을 이용한 은행나무 수나무 식별용 SCAR 마커 개발

  • Hong, Yong-Pyo (Division of Forest Genetic Resources, National Institute of Forest Science) ;
  • Lee, Jei-Wan (Division of Forest Genetic Resources, National Institute of Forest Science)
  • 홍용표 (국립산림과학원 산림유전자원과) ;
  • 이제완 (국립산림과학원 산림유전자원과)
  • Received : 2016.09.22
  • Accepted : 2016.11.09
  • Published : 2016.12.31

Abstract

Ginkgo (Ginkgo biloba L.) is one of the most appropriate roadside trees because of a good transplantation nature and ability to grow well in urban environment. Ginkgo is a dioecious species. Sex discrimination of ginkgo is possible through comparing morphological characters of reproductive organs. However, it needs more than about twenty years for reproductive organs to appear after sexual maturity. Until now, ginkgo trees for roadside plantation have been planted without discriminating the sex because ginkgo trees have been usually planted before sexual maturity. Ginkgo nuts from the female ginkgo trees planted along the roadside emit a foul odor, and make much pollution on the streets. Thus in this study a novel SCAR marker (SCAR-GBM) for the early sex discrimination was developed. Primers were developed on the basis of the sequence of male-specific RAPD variants reported previously. False-negative problem of SCAR marker, probably caused by dominant nature, was resolved by using multiplex PCR using primers of both the SCAR-GBM and a universal primer set of atp1 region in mitochondria DNA, which resulted in improved discrimination efficiency. The results showed that DNA bands of 1,039 bp were commonly amplified by the atp1 primer set in male and female trees, and SCAR-GBM markers of 675 bp were specifically amplified only in male trees. Reproducible and specific discrimination of the multiplex PCR was finally confirmed by applying multiple male and female individuals.

은행나무는 이식성이 좋고 열악한 환경에서도 잘 자라기 때문에 도심 가로수나 조경수로 매우 적합한 수종이다. 은행나무는 암수딴그루 식물로 수나무와 암나무의 생식기관(수꽃과 암꽃)의 비교를 통하여 성을 식별할 수 있으나, 꽃이 달리기까지 약 20년 이상이 필요하다. 가로수용 은행나무는 주로 꽃이 생성되기 이전에 식재되기 때문에 암나무와 수나무 구분 없이 가로수로 식재되어왔다. 가로수로 식재된 암나무에서 열리는 은행나무 열매는 악취를 발산하고 거리 오염을 야기하고 있다. 따라서 본 연구에서는 유시에 수나무를 선별하기 위하여 기존에 보고된 수나무 특이 RAPD 변이체의 염기서열을 기반으로 수나무에서만 675 bp의 PCR 산물을 증폭하는 SCAR 마커(SCAR-GBM)를 개발하였다. SCAR-GBM 마커의 우성 마커 특성에 기인한 위음성(false-negative)문제를 해결하고 식별 효율을 향상시키기 위하여 SCAR-GBM 마커와 mtDNA의 atp1 영역을 증폭하는 범용 프라이머를 동시에 적용하는 multiplex PCR을 이용하였다. 그 결과 암나무와 수나무에서 공히 atp1 영역에 해당하는 1,039 bp의 PCR 산물이 증폭되었으며, 수나무에서만 특이적으로 SCAR-GBM 마커가 증폭되었다. 전국 8개 지역에서 채취된 암나무와 수나무 각 80개체에 대한 분석을 통하여 SCAR-GBM 마커와 multiplex PCR 방법의 재현성이 확인되었다.

Keywords

References

  1. Chamberlain, J.S., Gibbs, R.A., Rainer, J.E., Nguyen, P.N., and Thomas, C. 1988. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Research 16: 11141-11156. https://doi.org/10.1093/nar/16.23.11141
  2. Dellaporta, S.L. and Calderon, U.A. 1993. Sex determination in flowering plants. Plant Cell 5: 1241-1251. https://doi.org/10.1105/tpc.5.10.1241
  3. Echenard, V., Lefort, F., Calmin, G., Perroulaz, R., and Belhahri, L. 2008. A new and improved automated technology for early sex determination of Ginkgo biloba. Arboriculture and Urban Forestry 34: 300-307.
  4. Henegariu, O., Heerema, N.A., Dlouhy, S.R., Vance, G.H., and Vogt, P.H. 1997. Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23: 504-511.
  5. Jiang, L., You, R.L., Li, M.X., and Shi, C. 2003. Identification of a sex-associated RAPD marker in Ginkgo biloba. Acta Botanica Sinica 45(6): 742-747.
  6. Korea Forest Service. 2015. Statictical Yearbook of Forestry. pp. 405.
  7. Lee, J.W., Kim, Y.C., Jo, I.H., Seo, A.Y., Lee, J.H., Kim, O.T., Hyun, D.Y., Cha, S.W., Bang, K.H., and Cho, J.H. 2011. Development of an ISSR-derived SCAR marker in Korean ginseng cultivars (Panax ginseng C. A. Meyer). Journal of Ginseng Research 35: 52-59. https://doi.org/10.5142/jgr.2011.35.1.052
  8. Lee, T.B. 2003. Coloured Flora of Korea. Hyang Mun Sa, Seoul,Korea. pp. 910.
  9. Liao, L., Liu, J., Dai, Y., Li, Q., Xie, M., Chen, Q., Yin, H., Qiu, G., and Liu, X. 2009. Development and application of SCAR markers for sex identification in the dioecious species Ginkgo biloba L. Euphytica 169: 49-55. https://doi.org/10.1007/s10681-009-9913-8
  10. Ma, J. and Zhao, Y. 2009. Ginkgo biloba: the precious qualities of a "fossil" tree. Child's Nervous System 25(7): 777-778. https://doi.org/10.1007/s00381-009-0866-y
  11. Major, R.T. 1967. The ginkgo, the most ancient living tree. Science 157: 1270-1273. https://doi.org/10.1126/science.157.3794.1270
  12. Mastan, S.G., Sudheer, P.D., Rahman, H., Reddy, M.P., and Chikara, J. 2012. Development of SCAR marker specific to non-toxic Jatropha curcas L. and designing a novel multiplexing PCR along with nrDNA ITS primers to circumvent the false negative detection. Molecular biotechnology. 50(1): 57-61. https://doi.org/10.1007/s12033-011-9415-5
  13. National Institute of Forest Science, Korea. 2014. Method for Identifying the Gender of Ginkgo biloba Using a Molecular Marker. Korea Patent 10-1395343.
  14. National Institute of Forest Science, Korea. 2015. Sex Identification of Ginkgo biloba Using Molecular Marker. China Patent. ZL201310133068.2.
  15. Nakao, Y., Taira, T., Horiuchi, S., Kawase, K., and Mukai, Y. 2005. Chromosomal Difference between Male and Female Trees of Ginkgo biloba Examined by Karyotype Analysis and Mapping of rDNA on the Chromosomes by Fluorescence in situ Hybridization. Journal of Japanese Society for Horticlutural Science 74(4): 275-280. https://doi.org/10.2503/jjshs.74.275
  16. Singh, B., Kaur, P., Singh, R.D., and Ahuja, P.S. 2008. Biology and chemistry of Ginkgo biloba. Fitoterapia 79(6): 401-418. https://doi.org/10.1016/j.fitote.2008.05.007
  17. Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., and Rozen, S.G. 2012. Primer3-new capabilities and interfaces. Nucleic Acids Rresearch 40(15): e115-e115. https://doi.org/10.1093/nar/gks596
  18. Wada, K. and Haga, M. 1997. Food poisoning by Ginkgo biloba seeds. In Ginkgo Biloba A Global Treasure (pp. 309-321). Springer Japan.
  19. Wang, X.R., Tsumura, Y., Yoshimaru, H., Nagasaka, K., and Szmidt, A.E. 1999. Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, matK, rpl20-rps18 spacer, and trnV intron sequences. American Journal of Botany 86(12): 1742-1753. https://doi.org/10.2307/2656672
  20. Wu, J., Krutovskii, K.V., and Strauss, S.H. 1998. Abundant mitochondrial genome diversity, population differentiation and convergent evolution in pines. Genetics 150(4): 1605-1614.
  21. Xu, J., Miao, H., Wu, H., Huang, W., Tang, R., Qiu, M., Wen, J., Zhu, S., and Li, Y. 2006. Screening genetically modified organisms using multiplex-PCR coupled with oligonucleotide microarray. Biosens Bioelectron 22: 71-77. https://doi.org/10.1016/j.bios.2005.12.001