DOI QR코드

DOI QR Code

Genetic Diversity and Genetic Structure of Acer pseudosieboldianum Populations in South Korea Based on AFLP Markers

AFLP 마커를 이용한 당단풍나무 집단의 유전다양성과 유전구조

  • Ahn, Jiyoung (Division of Forest Genetic Resources, National Institute of Forest Science) ;
  • Hong, Kyung-Nak (Division of Forest Genetic Resources, National Institute of Forest Science) ;
  • Baek, Seung-Hoon (Division of Forest Genetic Resources, National Institute of Forest Science) ;
  • Lee, Min-Woo (Division of Forest Genetic Resources, National Institute of Forest Science) ;
  • Lim, Hyo-In (Division of Forest Genetic Resources, National Institute of Forest Science) ;
  • Lee, Jei-Wan (Division of Forest Genetic Resources, National Institute of Forest Science)
  • 안지영 (국립산림과학원 산림유전자원과) ;
  • 홍경낙 (국립산림과학원 산림유전자원과) ;
  • 백승훈 (국립산림과학원 산림유전자원과) ;
  • 이민우 (국립산림과학원 산림유전자원과) ;
  • 임효인 (국립산림과학원 산림유전자원과) ;
  • 이제완 (국립산림과학원 산림유전자원과)
  • Received : 2016.08.01
  • Accepted : 2016.09.07
  • Published : 2016.12.31

Abstract

Fourteen Acer pseudosieboldianum populations in South Korea were used to estimate genetic diversity, genetic differentiation and genetic relationships using seven AFLP primer combinations. The average of effective alleles ($A_e$), the proportion of polymorphic loci (%P) and Shannon's diversity index (I) was 1.4, 82.2% and 0.358, respectively. The expected heterozygosity ($H_e$) under Hardy-Weinberg equilibrium was 0.231 and the expected heterozygosity (Hj) from Bayesian inference was 0.253. The level of genetic diversity was moderate compared to those of Genus Acer and lower than those of other species having similar ecological niche and life history. The inbreeding coefficient within populations ($F_{IS}$) from Bayesian method was 0.712 and it could be influenced by selfing or biparental inbreeding to induce homozygote excess. The level of genetic differentiation was 0.107 from AMOVA (${\Phi}_{ST}$) and 0.110 from Bayesian method (${\Phi}^{II}$). The genetic differentiation was lower than those of other species having similar ecological niche and life history. Ulleungdo population had the lowest level of genetic diversity and was genetically the most distinct population from others in the study. We consider that founder effect and genetic drift might be occurred to reduce genetic diversity and then the geographical isolation might interrupt gene flow to aggravate it.

국내 당단풍나무 집단의 유전다양성, 유전분화 및 유연관계를 알아보기 위해 AFLP 분석을 실시하였다. 14개 당단풍나무 집단에 대한 7개 AFLP 프라이머 조합을 적용한 결과 유효대립유전자 수($A_e$)가 1.4개, 다형적 유전자좌 비율(%P)이 82.2%, Shannon의 다양성 지수(I)가 0.358, 이형접합도 기대치($H_e$)가 0.231이었고, 베이즈 방법으로 추론한 이형접합도 기대치(Hj)는 0.253으로 나타났다. 당단풍나무의 유전다양성은 단풍나무속 수종들과 비교했을 때 중간수준이었고, 생활사나 생태적 특성이 유사한 수종들에 비해 낮았다. 베이즈 방법으로 추정된 평균 $F_{IS}$값은 0.712로 나타나 자가수분이나 근연관계 개체 간 교배에 의한 동형접합체 증가가 유전다양성에 영향을 준 것으로 생각된다. AMOVA로 추정한 당단풍나무의 유전분화율(${\Phi}_{ST}$)은 0.107이었고, 베이즈 방법으로 추정한 유전분화율(${\Phi}^{II}$)은 0.110이었다. 당단풍나무는 생활사나 생태적 특성이 유사한 종들에 비해 유전분화가 적게 이루어진 것으로 나타났다. 유연 관계 분석에서 울릉도 집단은 내륙의 집단들과 유전적으로 가장 상이한 집단으로 나타났다. 울릉도 집단은 유전다양성이 가장 낮은 집단으로서, 내륙의 집단 일부가 이주하면서 생긴 창시자 효과와 유전적 부동에 의해 유전다양성 감소가 이루어졌고 내륙과의 지리적 격리로 인해 유전자 교류가 감소했기 때문으로 추정된다.

Keywords

References

  1. Ahn, J.Y., Hong, K.N., Lee, J.W., and Yang, B.H. 2013. Population genetic variation of Ulmus davidiana var. japonica in South Korea based on ISSR markers. Journal of Korea Forest Society 102(4): 560-565. (in Korean with English abstract) https://doi.org/10.14578/jkfs.2013.102.4.560
  2. Bensch, S. and Åkesson, M. 2005. Ten years of AFLP in ecology and evolution: why so few animals? Molecular Ecology 14: 2899-2914. https://doi.org/10.1111/j.1365-294X.2005.02655.x
  3. Chang, C.S. 1991. A morphometric analyses of genus Acer L. section Palmata Pax, series Palmata. Korean Journal of Plant Taxonomy 21: 165-186. (in Korean with English abstract) https://doi.org/10.11110/kjpt.1991.21.3.165
  4. Cho, H.J., Kim, S.T., Suh, Y.B., and Park, C.W. 1996. ITS sequences of some Acer species and phylogenetic implication. Korean Journal of Plant Taxonomy 26(4): 271-291. (in Korean with English abstract) https://doi.org/10.11110/kjpt.1996.26.4.271
  5. Choi, K.R., Kim, K.H., Kim, J.W., Kim, J.C., Lee, G.K., Yang, D.Y., and Nahm, W.H. 2005. Vegetation history since the mid-late glacial from Yeongsan River Basin, Southwestern Korea. Journal of Ecology and Environment 28(1): 37-43. (in Korean with English abstract)
  6. Chung, M.J., Kim, Y.S., Lee, I.S., Jo, J.S., and Sung, N.J. 1995. The components of the sap from Gorosoe (Acer momo Max.) and sugar maple (A. pseudosieboldianum Kom.). Journal of the Korean Society of Food Science and Nutrition 24(6): 911-916. (in Korean with English abstract)
  7. Chybicki, I.J., Waldon-Rudzionek, B., and Meyza, K. 2014. Population at the edge: increased divergence but not inbreeding towards northern range limit in Acer campestre. Tree Genetics & Genomes 10: 1739-1753. https://doi.org/10.1007/s11295-014-0793-2
  8. Earl, D.A. and vonHoldt, B.M. 2012. STRUCTURE HARVETER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetic Resources 4: 359-361. https://doi.org/10.1007/s12686-011-9548-7
  9. Evanno, G., Reanaut, S., and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  10. Felsenstein, J. 2013. PHYLIP (Phylogeny Inference Package) v3.695. Department of Genome Sciences and Department of Biology University of Washington. Seattle, WA, USA.
  11. Foll, M., Beaumont, M.A., and Gaggiotti, O. 2008. An Approximate Bayesian Computation Approach to overcome biases that arise when using amplified fragment length polymorphism markers to study population structure. Genetics 179: 927-939. https://doi.org/10.1534/genetics.107.084541
  12. Graignic, N., Tremblay, F., and Bergeron, Y. 2016. Genetic consequences of selection cutting on sugar maple (Acer saccharum Marshall). Evolutionary Applications DOI: 10.1111/eva.12384.
  13. Holsinger, K.E., Lewis, P.O., and Dey, D.K. 2002. A Bayesian approach to inferring population structure from dominant markers. Molecular Ecology 11: 1157-1164. https://doi.org/10.1046/j.1365-294X.2002.01512.x
  14. Hwang, J.W., Noh, E.W., Lee, J.S. and Park, S.K. 1996. Genetic relationship among Acer species revealed by RAPD and PCR-RFLP. Korean Journal of Breeding 28(4): 359-365.
  15. Jakobsson, M. and Rosenberg, N.A. 2007. CLUMPP: a cluster matching and permutation program with label switching and multimodality in analysis of population structure. Bioinformatics 23(14): 1801-1806. https://doi.org/10.1093/bioinformatics/btm233
  16. Jones, C.J. and 21 people. 1997. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Molecular Breeding 3: 381-390. https://doi.org/10.1023/A:1009612517139
  17. Kikuchi, S., Shibata, M., Tanaka, H., Yoshimaru, H., and Niiyama, K. 2009. Analysis of the disassortative mating pattern in a heterodichogamous plant, Acer mono Maxim. using microsatellite markers. Plant Ecology 204: 43-54. https://doi.org/10.1007/s11258-008-9564-1
  18. Kim, G.T. and Kim, H.J. 2011. Studies of the seed characteristics and viabilities of six Acer species in relation to natural regeneration in Korea. Korean Journal of Environmental Ecology 25(3): 358-364. (in Korean with English abstract)
  19. Kim, H.J., Hong, J.K., Kim, S.C., Oh, S.H., and Kim, J.H. 2011. Plant phenology of threatened species for climate change in sub-alpine zone of Korea - Especially on the summit area of Mt. Deogyusan - Korean Journal of Plant Resources 24(5): 549-556. (in Korean with English abstract) https://doi.org/10.7732/kjpr.2011.24.5.549
  20. Kim, H.J. and Kim, G.T. 2016. Flowering, fruiting, seed fall and seed viability of Acer pseudosieboldianum in Mt. Jung-wang, Gangwondo. Journal of Korean Forestry Society 105(1): 42-47. (in Korean with English abstract) https://doi.org/10.14578/jkfs.2016.105.1.42
  21. Kim, K.H. and Park, J.M. 1996. A study on the pollen morphology of the Genus Acer L. in Korea. Journal of Korean Forestry Society 85(3): 472-486. (in Korean with English abstract)
  22. Kovach, K.E., Iqbal, M.J., Egertsdotter, E.M.U., and Zedaker, S.M. 2009. Assessment of genetic and wood density variation of Acer rubrum L. populations in unmanaged forests of the Southeastern United States. pages 50-69 in Kovach, K.E., ed. Assessment of Genetic Variation of Acer rubrum L. and Liriodendron tulipifera L. populations in unmanaged forests of the Southeast United States. Virginia Polytechnic Institute and State University. Virginia, USA, pp. 115.
  23. Lara-Gomez, V.G., Gailing, O., and Finkeldey, R. 2005. Genetic variation in isolated Mexican populations of the endemic maple Acer skutchii Rehd. Allgemeine Forst und Jagdzeitung 176(6/7): 97-103.
  24. Lee, J.H., Cho, H.J., and Hur, T.C. 2006. Spatial distribution and vegetation-environment relationship of forest vegetation in Ulleung Island, Korea. Journal of Ecology and Environment 29(6): 521-529. (in Korean with English abstract) https://doi.org/10.5141/JEFB.2006.29.6.521
  25. Lee, J.W., Hong, K.N., and Kang, J.T. 2014. Genetic Diversity and Genetic Structure of Phellodendron amurense populations in South Korea. Journal of Korean Forest Society 103(1): 51-58. (in Korean with English abstract) https://doi.org/10.14578/jkfs.2014.103.1.51
  26. Liu, C., Tsuda, Y., Shen, H., Hu, L., Saito, Y., and Ide, Y. 2014. Genetic structure and Hierarchical population divergence history of Acer mono var. mono in South and Northeast China. PLOS one 9(1): e87187. https://doi.org/10.1371/journal.pone.0087187
  27. Lynch, M. and Milligan, B. 1994. Analysis of population genetic structure using RAPD markers. Molecular Ecology 3: 91-99. https://doi.org/10.1111/j.1365-294X.1994.tb00109.x
  28. Mueller, U.G. and Wolfenbarger, L.L. 1999. AFLP genotyping and fingerprinting. TREE 14(10): 389-394.
  29. Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in Plants. Molecular Ecology 13: 1143-1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x
  30. Park, K.W. 1984. Taxonomical studies of the Genus Acer in Korea by the morphological characteristics of stipules. Journal of Korean Forest Society 67: 1-9. (in Korean with English abstract)
  31. Park, C.W., Oh, S.H., and Shin, H.C. 1993. Reexamination of vascular plants in Ullung Island, Korea II: Taxonomic identity of Acer takesimense Nakai (Aceraceae). Korea Journal of Plant Taxonomy 23(4): 217-231. https://doi.org/10.11110/kjpt.1993.23.4.217
  32. Peakall, R. and Smouse, P.E. 2006. GENEALEX 6: genetic analysis in Excel. population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  33. Pfosser, M.F., Guzy-Wrόbelska, J., Sun, B.Y., Stuessy, T.F., Sugawara, T., and Fujji, N. 2002. The origin of species of Acer (Sapindaceae) Endemic to Ulleung Island, Korea. Systamatic Botany 27(2): 351-367.
  34. Porth, I. and El-Kassaby, Y.A. 2014. Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity 6: 283-295. https://doi.org/10.3390/d6020283
  35. Pritchard, J.K., Stephens, M., and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.
  36. Roh, M.S., Mcnamara, W.A., Picton, D., Yin, K., and Wang, Q. 2008. Assesment of genetic variation in Acer Pentaphyllum based on amplified fragment length polymorphism. Journal of Horticultural Science & Biotechnology 83(6): 725-731. https://doi.org/10.1080/14620316.2008.11512451
  37. Rosenberg, N.A. 2004. DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes 4: 137-138.
  38. Stuessy, T.F., Jakubowsky, G., Gómex, R.S., Pfosser, M., Schlüter, P.M., Fer, T., Sun, B.Y., and Kato, H. 2006. Anagenetic evolution in island plants. Journal of Biogeography 33: 1259-1265. https://doi.org/10.1111/j.1365-2699.2006.01504.x
  39. Takayama, K., Sun, B.Y., and Stuessy, T.F. 2012. Genetic consequences of anagenetic speciation in Acer okamotoanum (Sapindaceae) on Ullung Island, Korea. Annals of Botany 109: 321-330. https://doi.org/10.1093/aob/mcr280
  40. Takayama, K., Sun, B.Y., and Stuessy, T.F. 2013. Anagenetic speciation in Ullung Island, Korea: genetic diversity and structure in the island endemic species, Acer takesimense (Sapindaceae). 2013. Journal of Plant Research 126: 323-333. https://doi.org/10.1007/s10265-012-0529-z
  41. Yang, J., Zhao, L.L., Yang, J.B., and Sun, W.B. 2015. Genetic diversity and conservation evaluation of a critically endangered endemic maple, Acer yabgbiense, analyzed using microsatellite markers. Biochemical Systematics and Ecology 60: 193-198. https://doi.org/10.1016/j.bse.2015.04.027
  42. Vekemans, X. 2002. AFLP-SURV 1.0: A program for genetic diversity analysis with AFLP (and RAPD) population data. Laboratoire de Genetique et d'Ecologie Vegetales, Universite Libre de Bruxelles.
  43. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23(21): 4407-4414. https://doi.org/10.1093/nar/23.21.4407

Cited by

  1. Genetic diversity and structure of Carpinus laxiflora populations in South Korea based on AFLP markers vol.15, pp.4, 2016, https://doi.org/10.1080/21580103.2019.1666748
  2. Genetic diversity and structure of Prunus padus populations in South Korea based on AFLP markers vol.16, pp.4, 2016, https://doi.org/10.1080/21580103.2020.1807415