DOI QR코드

DOI QR Code

Probiotic 미생물 검사에 사용되는 다양한 방법들에 대한 현황과 향후 전망

Current Status and Prospects of Various Methods used for Screening Probiotic Microorganisms

  • 김동현 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 김홍석 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 정다나 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 천정환 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 김현숙 (한양대학교 생활과학대학 식품영양학과) ;
  • 김영지 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 강일병 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 이수경 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 송광영 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 박진형 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 장호석 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 서건호 (건국대학교 수의과대학 식품안전건강연구소)
  • Kim, Dong-Hyeon (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Kim, Hong-Seok (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Jeong, Dana (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Chon, Jung-Whan (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Kim, Hyunsook (Dept. of Food & Nutrition, College of Human Ecology, Hanyang University) ;
  • Kim, Young-Ji (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Kang, Il-Byung (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Lee, Soo-Kyung (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Song, Kwang-Young (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Park, Jin-Hyeong (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Chang, Ho-Seok (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Seo, Kun-Ho (Center for One Health, College of Veterinary Medicine, Konkuk University)
  • 투고 : 2016.10.18
  • 심사 : 2016.11.01
  • 발행 : 2016.12.30

초록

지난 수십 년 동안 행복과 건강에 있어서 식품의 긍정적인 역할에 대한 소비자들의 관심과 인식의 증가 등의 이유로 기능성 식품의 생산 방향으로 식품산업이 변화되어가고 있다. Probiotic 식품의 정의에 의하면, 소비자들의 건강에 도움을 줄 수 있는 충분한 양의 살아있는 미생물을 반드시 포함해야 된다고 규정하고 있다. 오늘날 많은 probiotic 식품들이 판매되고 있으며, 또한 다양한 probiotic 균주들은 상업적으로 이용되고 있다. 하지만, 미생물들의 실제적으로 잠재적인 능력을 어떻게 평가하는 것은 매우 관심을 가지는 부분이다. 왜냐하면 최근 관련 문헌의 검사에서도 알 수 있듯이, probiotic 관련 연구가 급속하게 증가하고 있기에 더욱더 이 부분은 중요하게 인식되어지고 있다. 비록 대부분의 probiotic 미생물들은 식품 또는 공생세균으로서 일반적으로 안전하다고 여겨지고 있지만, 그 외의 재료들에서 얻은 probiotics는 법적인 규제와 안전문제에 대한 우려가 더욱더 증가되고 있는 것은 사실이다. Probiotic으로서 잠재력을 가진 균주들은 in vitro 또는 in vivo 검사를 통해서 선별되어질 수 있다. 예를 들면, 위장 또는 담즙과 같은 산성의 조건에서도 생존능력은 간단한 실험을 통해서 평가될 수 있으며, 또는 면역 활성, 신진대사 기능 또는 장-뇌 상호작용과 같은 복잡한 숙주 기능에서도 영향력의 평가가 가능하게 이루어질 수 있다. 인간의 건강 증진을 위해서는 반드시 고려되어야 하는 것은 궁극적으로 인간을 대상으로 진행되는 임상시험이지만, 지금까지 긍정적인 결과를 나타내는 연구를 통해서 밝혀진 소수의 균주들만이 법적으로 건강 기능성 강조표시(health claim)를 획득할 수 있었다. 따라서 현재 probiotics라고 규정하는데 이용되는 검사방법들의 유효성에 대한 관심이 증가하고 있는 것이 사실이다. 따라서 본 총설논문에서 probiotics의 선별에 이용되는 가장 일반적인 방법과 이들 방법들의 장점 및 한계성에 관해서 자세하게 설명하였다. 더 나아가서, 최근에 omics 기술의 출현은 probiotics의 생물현상을 새롭게 이해하는데 큰 도움으로 주고 있으며, 결국 omics 기술은 probiotics와 같은 다양한 미생물들을 연구하고 선별하는데 새로운 방법으로 이용될 수 있을 것이다. 하지만 여기에 대한 추가적인 연구들은 반드시 진행되어야 할 것이다.

Probiotic microorganisms are thought to provide health benefits when consumed. In 2001, the World Health Organization defined probiotics as "live microorganisms which confer a health benefit on the host, when administered in adequate amounts." Three methods for screening potential probiotics have currently widely available. (1) In vitro assays of potential probiotics are preferred because of their simplicity and low cost. (2) The use of in vivo approaches for exploring various potential probiotics reflects the enormous diversity in biological models with various complex mechanisms. (3) Potential probiotics have been analyzed using several genetic and omics technologies to identify gene expression or protein production patterns under various conditions. However, there is no ideal procedure for selecting potential probiotics than testing cadidate strains on the target population. Hence, in this review, we provide an overview of the different methodologies used to identify new probiotic strains. Furthermore, we describe futre perspectives for the use of in vitro, in vivo and omics in probiotic research.

키워드

참고문헌

  1. An, H., Douillard, F. P., Wang, G., Zhai, Z., Yang, J., Song, S., Cui, J., Ren, F., Luo, Y., Zhang, B. and Hao, Y. 2014. Integratedtranscriptomic and proteomic analysis of the bile stress response in a centenarianoriginated probiotic Bifidobacterium longum BBMN68. Mol. Cell Proteomics. 13:2558-2572. https://doi.org/10.1074/mcp.M114.039156
  2. Bao, Y., Zhang, Y., Zhang, Y., Liu, Y., Wang, S., Dong, X., Wang, Y. and Zhang, H. 2010. Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21:695-701. https://doi.org/10.1016/j.foodcont.2009.10.010
  3. Bauerl, C., Perez-Martinez, G., Yan, F., Polk, D. B. and Monedero, V. 2010. Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23. J. Mol. Microbiol. Biotechnol. 19:231-241. https://doi.org/10.1159/000322233
  4. Bernardeau, M., Guguen, M. and Vernoux, J. P. 2006. Beneficial lactobacilli in food and feed: Long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol. Rev. 30:487-513. https://doi.org/10.1111/j.1574-6976.2006.00020.x
  5. Botta, C., Langerholc, T., Cencic, A. and Cocolin, L. 2014. In vitro selection andcharacterization of new probiotic candidates from table olive microbiota. PLoSONE 9: e94457. https://doi.org/10.1371/journal.pone.0094457
  6. Bover-Cid, S. and Holzapfel, W. H. 1999. Improved screening procedure forbiogenic amine production by lactic acid bacteria. Int. J. Food. Microbiol. 53:33-41. https://doi.org/10.1016/S0168-1605(99)00152-X
  7. Bron, P., Van Bokhorst-Van De Veen, H., Wels, M. and Kleerebezem, M. 2011. "Engineering robust lactic acid bacteria," in Stress Responses of Lactic Acid Bacteria,eds E. Tsakalidou and K. Papadimitriou (New York: Springer), 369-394.
  8. Burns, A. J. and Rowland, I. R. 2004. Antigenotoxicity of probiotics and prebioticson faecal water-induced DNA damage in human colon adenocarcinoma cells. Mutat. Res. 551:233-243. https://doi.org/10.1016/j.mrfmmm.2004.03.010
  9. Campieri, C., Campieri, M., Bertuzzi, V., Swennen, E., Matteuzzi, D., Stefoni, S., Pirovano, F., Centi, C., Ulisse, S., Famularo, G. and De Simone, C. 2001. Reduction of oxaluria after an oral course of lactic acidbacteria at high concentration. Kidney Int. 60:1097-1105. https://doi.org/10.1046/j.1523-1755.2001.0600031097.x
  10. Cani, P., Everard,A., Belzer, C. and De, V. W. 2014. Use of Akkermansia for Treating Metabolic Disorders. Patent no. WO2014075745A1.
  11. Castro, M. S., Molina, M. A., Di Sciullo, P., Azpiroz, M. B., Leocata Nieto, F., SterinSpeziale, N. B., Mongini, C. and Manghi, M.A. 2010. Beneficial activity of Enterococcus faecalis CECT7121 in the anti-lymphoma protective response. J. Appl. Microbiol. 109:1234-1243. https://doi.org/10.1111/j.1365-2672.2010.04747.x
  12. Cencic, A. and Langerholc, T. 2010. Functional cell models of the gut and their applications in food microbiology-a review. Int. J. Food Microbiol. 141 (Suppl. 1):S4-S14. https://doi.org/10.1016/j.ijfoodmicro.2010.03.026
  13. Choi, S. S., Kim, Y., Han, K. S., You, S., Oh, S. and Kim, S. H. 2006. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett. Appl. Microbiol. 42:452-458. https://doi.org/10.1111/j.1472-765X.2006.01913.x
  14. Coman, M. M., Verdenelli, M. C., Cecchini, C., Silvi, S., Orpianesi, C., Boyko, N. and Cresci, A. 2014. In vitro evaluation of antimicrobial activity of Lactobacillus rhamnosus IMC 501(R), Lactobacillus paracasei IMC 502(R) and SYNBIO(R) against pathogens. J. Appl. Microbiol. 117: 518-527 https://doi.org/10.1111/jam.12544
  15. Corr, S. C., Li, Y., Riedel, C. U., O'toole, P. W., Hill, C. and Gahan, C. G. 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. U.S.A. 104: 7617-7621. https://doi.org/10.1073/pnas.0700440104
  16. Corthesy, B., Gaskins, H. R. and Mercenier, A. 2007. Cross-talk between probioticbacteria and the host immune system. J. Nutr. 137:781S-790S. https://doi.org/10.1093/jn/137.3.781S
  17. Cousin, F. J., Jouan-Lanhouet, S., Dimanche-Boitrel, M.-T., Corcos, L. and Jan, G. 2012. Milk fermented by Propionibacterium freudenreichii inducesapoptosis of HGT-1 human gastric cancer cells. PLoS ONE 7: e31892. https://doi.org/10.1371/journal.pone.0031892
  18. Duangjitcharoen, Y., Kantachote, D., Prasitpuripreecha, C., Peerajan, S. and Chaiyasut, C. 2014. Selection and characterisation of probiotic lactic acid bacteria with heterocyclic amine binding and nitrosamine degradation properties. J. Appl. Pharm. Sci. 4:014-023.
  19. Eaton, K. A., Honkala, A., Auchtung, T. A. and Britton, R. A. 2011. Probiotic Lactobacillus reuteriameliorates disease due to enterohemorrhagic Escherichia coli in germfree mice. Infect. Immun. 79:185-191. https://doi.org/10.1128/IAI.00880-10
  20. Ewaschuk, J. B., Diaz, H., Meddings, L., Diederichs, B., Dmytrash, A., Backer, J., Looijer-van Langen, M. and Madsen, K.L. 2008. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 295:G1025-G1034. https://doi.org/10.1152/ajpgi.90227.2008
  21. Fanning, S., Hall, L. J., Cronin, M., Zomer, A., Macsharry, J., Goulding, D., Motherway, M.O., Shanahan, F., Nally, K., Dougan, G. and van Sinderen, D. 2012. Bifidobacterial surface-exopolysaccharide facilitates commensalhost interaction through immune modulation and pathogen protection. Proc. Natl. Acad. Sci. U.S.A. 109:2108-2113. https://doi.org/10.1073/pnas.1115621109
  22. Faridnia, F., Hussin, A. S., Saari, N., Mustafa, S., Yee, L. Y. and Manap, M. Y. 2010. In vitro binding of mutagenic heterocyclic aromatic amines by Bifidobacterium pseudocatenulatum G4. Benef. Microbes 1:149-154. https://doi.org/10.3920/BM2009.0035
  23. Foligne, B., Nutten, S., Grangette, C., Dennin, V., Goudercourt, D., Poiret, S., Dewulf, J., Brassart, D., Mercenier, A. and Pot, B. 2007. Correlation between in vitro and in vivo immunomodulatoryproperties of lactic acid bacteria. World J. Gastroenterol. 13:236-243. https://doi.org/10.3748/wjg.v13.i2.236
  24. Fujii, T., Ingham, C., Nakayama, J., Beerthuyzen, M., Kunuki, R., Molenaar, D., Sturme, M., Vaughan, E., Kleerebezem, M. and de Vos, W. 2008. Two homologous Agr-like quorum-sensing systems cooperatively control adherence, cell morphology, and cell viability properties in Lactobacillus plantarum WCFS1. J. Bacteriol. 190:7655-7665. https://doi.org/10.1128/JB.01489-07
  25. Fukuda, S., Toh, H., Taylor, T. D., Ohno, H. and Hattori, M. 2012. Acetate producing bifidobacteria protect the host from enteropathogenic infection viacarbohydrate transporters. Gut Microbes 3:449-454. https://doi.org/10.4161/gmic.21214
  26. Garcia-Cayuela, T., Korany, A. M., Bustos, I., Gomez De Cadinanos, L. P., Requena, T., Pelaez, C. and Martinez-Cuesta, M.C. 2014. Adhesion abilities of dairy Lactobacillus plantarumstrains showing an aggregation phenotype. Food Res. Int. 57:44-50. https://doi.org/10.1016/j.foodres.2014.01.010
  27. Gilad, O., Svensson, B., Viborg, A. H., Stuer-Lauridsen, B. and Jacobsen, S. 2011. The extracellular proteome of Bifidobacterium animalis subsp. lactis BB-12 reveals proteins with putative roles in probiotic effects. Proteomics 11: 2503-2514. https://doi.org/10.1002/pmic.201000716
  28. Gueimonde, M. and Collado, M. C. 2012. Metagenomics and probiotics. Clin. Microbiol. Infect. 18(Suppl. 4):32-34. https://doi.org/10.1111/j.1469-0691.2012.03873.x
  29. Hamon, E., Horvatovich, P., Izquierdo, E., Bringel, F., Marchioni, E., Aoude-Werner, D. and Ennahar, S. 2011. Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiol. 11:63. https://doi.org/10.1186/1471-2180-11-63
  30. Harty, D. W., Oakey, H. J., Patrikakis, M., Hume, E. B. and Knox, K. W. 1994. Pathogenic potential of lactobacilli. Int. J. Food Microbiol. 24:179-189. https://doi.org/10.1016/0168-1605(94)90117-1
  31. Helm, R. M. and Burks, A. W. 2002. Animal models of food allergy. Curr. Opin. Allergy Clin. Immunol. 2:541-546. https://doi.org/10.1097/00130832-200212000-00011
  32. Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W. Z., Strowig, T., Thaiss, C.A., Kau, A.L., Eisenbarth, S.C. and Jurczak, M.J. 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179-185. https://doi.org/10.1038/nature10809
  33. Hsiao, E. Y., Mcbride, S. W., Hsien, S., Sharon, G., Hyde, E. R., Mccue, T., Codelli, J.A., Chow, J., Reisman, S.E., Petrosino, J.F., Patterson, P.H. and Mazmanian, S.K. 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155: 1451-1463. https://doi.org/10.1016/j.cell.2013.11.024
  34. Hughes, D. B. and Hoover, D. G. 1995. Viability and enzymatic activity of bifidobacteria in milk. J. Dairy Sci. 78:268-276. https://doi.org/10.3168/jds.S0022-0302(95)76634-6
  35. Ito, M., Kobayashi, K. and Nakahata, T. 2008. "NOD/Shi-scid IL2r${\gamma}$null (NOG) mice more appropriate for humanized mouse models," in Humanized Mice, eds T. Nomura, T. Watanabe, and S. Habu (Berlin: Springer), 53-76.
  36. Jacobi, C. A., Grundler, S., Hsieh, C. J., Frick, J. S., Adam, P., Lamprecht, G., Autenrieth, I., Gregor, M. and Malfertheiner, P. 2012. Quorum sensing in the probiotic bacterium Escherichia coli Nissle 1917 (Mutaflor) - evidence that furanosyl borate diester (AI-2) is influencingthe cytokine expression in the DSS colitis mouse model. Gut Pathog. 4:8. https://doi.org/10.1186/1757-4749-4-8
  37. Jin, J., Zhang, B., Guo, H., Cui, J., Jiang, L., Song, S., Sun, M. and Ren, F. 2012. Mechanism analysis of acid tolerance response of Bifidobacterium longum subsp. longum BBMN 68 by gene expression profile using RNA-sequencing. PLoS ONE 7:e50777. https://doi.org/10.1371/journal.pone.0050777
  38. Kikuchi, Y., Kunitoh-Asari, A., Hayakawa, K., Imai, S., Kasuya, K., Abe, K., Adachi, Y., Fukudome, S., Takahashi, Y. and Hachimura, S. 2014. Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection inmice. PLoS ONE 9:e86416. https://doi.org/10.1371/journal.pone.0086416
  39. Kim, J. F., Jeong, H., Yu, D. S., Choi, S. H., Hur, C. G., Park, M. S., Yoon, S.H., Kim, D.W., Ji, G.E., Park, H.S. and Oh, T.K. 2009. Genome sequence of the probiotic bacterium Bifidobacterium animalis subsp. lactis AD011. J. Bacteriol. 191:678-679. https://doi.org/10.1128/JB.01515-08
  40. Kim, J. Y., Park, B. K., Park, H. J., Park, Y. H., Kim, B. O. and Pyo, S. 2013. Atopic dermatitis-mitigating effects of new Lactobacillus strain, Lactobacillus sakei probio65 isolated from Kimchi. J. Appl. Microbiol. 115:517-526. https://doi.org/10.1111/jam.12229
  41. Kinoshita, H., Imoto, S., Suda, Y., Ishida, M., Watanabe, M., Kawai, Y., Kitazawa, H., Miura, K., Horii, A. and Saito, T. 2013. Proposal of screening method for intestinal mucus adhesive lactobacilli using the enzymatic activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Anim. Sci. J. 84:150-158. https://doi.org/10.1111/j.1740-0929.2012.01054.x
  42. Koponen, J., Laakso, K., Koskenniemi, K., Kankainen, M., Savijoki, K., Nyman, T. A., de Vos W.M., Tynkkynen, S., Kalkkinen, N. and Varmanen, P. 2012. Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. J. Proteomics 75:1357-1374. https://doi.org/10.1016/j.jprot.2011.11.009
  43. Koskenniemi, K., Laakso, K., Koponen, J., Kankainen, M., Greco, D., Auvinen, P., Savijoki, K., Nyman, T.A., Surakka, A., Salusjarvi, T., de Vos, W.M., Tynkkynen, S., Kalkkinen, N. and Varmanen, P. 2011. Proteomics and transcriptomics characterization of bile stressresponse in probiotic Lactobacillus rhamnosus GG. Mol. Cell. Proteomics 10, M110.002741. https://doi.org/10.1074/mcp.M110.002741
  44. Kullisaar, T., Zilmer, M., Mikelsaar, M., Vihalemm, T., Annuk, H., Kairane, C. and Kilk, A. 2002. Two antioxidative lactobacilli strains as promising probiotics. Int. J. FoodMicrobiol. 72:215-224.
  45. Kwon, H. K., Kim, G. C., Kim, Y., Hwang, W., Jash, A., Sahoo, A., Kim, J.E., Nam, J.H. and Im, S.H. 2013. Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response. Clin. Immunol. 146:217-227. https://doi.org/10.1016/j.clim.2013.01.001
  46. Le Marechal, C., Peton, V., Ple, C., Vroland, C., Jardin, J., Briard-Bion, V., Durant, G., Chuat, V., Loux, V., Foligne, B., Deutsch, S.M., Falentin, H. and Jan, G. 2014. Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties. J. Proteomics. 113:447-461.
  47. Le Roy, T., Llopis, M., Lepage, P., Bruneau, A., Rabot, S., Bevilacqua, C., Martin, P., Philippe, C., Walker, F., Bado, A., Perlemuter, G., Cassard-Doulcier, A.M. and Gerard, P. 2013. Intestinal microbiota determines development of non-alcoholic fatty liver diseasein mice. Gut 62:1787-1794. https://doi.org/10.1136/gutjnl-2012-303816
  48. Lebeer, S., Claes, I. J. J., Verhoeven, T. L. A., Vanderleyden, J. and De Keersmaecker, S. C. J. 2011. Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb. Biotechnol. 4:368-374. https://doi.org/10.1111/j.1751-7915.2010.00199.x
  49. Lee, J., Kim, Y., Yun, H. S., Kim, J. G., Oh, S. and Kim, S. H. 2010. Genetic and proteomic analysis of factors affecting serum cholesterol reduction by Lactobacillu sacidophilus A4. Appl. Environ. Microbiol. 76:4829-4835. https://doi.org/10.1128/AEM.02892-09
  50. Lye, H. S., Rusul, G. and Liong, M. T. 2010. Removal of cholesterol by lactobacillivia incorporation and conversion to coprostanol. J. Dairy Sci. 93:1383-1392. https://doi.org/10.3168/jds.2009-2574
  51. Mack, D. R., Ahrne, S., Hyde, L., Wei, S. and Hollingsworth, M. A. 2003. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52:827-833. https://doi.org/10.1136/gut.52.6.827
  52. Martin, F. P., Wang, Y., Sprenger, N., Yap, I. K., Rezzi, S., Ramadan, Z., van Bladeren, P., Fay, L.B., Kochhar, S., Lindon, J.C., Holmes, E. and Nicholson, J.K. 2008. Top-down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model. Mol. Syst. Biol. 4:205.
  53. McKay, D. M., Philpott, D. J. and Perdue, M. H. 1997. Review article: In vitro models in inflammatory bowel disease research-a critical review. Aliment. Pharmacol. Ther. 11(Suppl. 3):70-80.
  54. Meijerink, M., Van Hemert, S., Taverne, N., Wels, M., De Vos, P., Bron, P. A., Savelkoul, H.F., van Bilsen, J., Kleerebezem, M. and Wells, J.M. 2010. Identification of genetic loci in Lactobacillus plantarumthat modulatethe immune response of dendritic cells using comparative genome hybridization. PLoS ONE 5:e10632. https://doi.org/10.1371/journal.pone.0010632
  55. Miquel, S., Martin, R., Rossi, O., Bermudez-Humaran, L. G., Chatel, J. M., Sokol, H., Thomas, M., Well, J.M. and Langella, P. 2013. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 16, 255-261. https://doi.org/10.1016/j.mib.2013.06.003
  56. Mitsuma, T., Odajima, H., Momiyama, Z., Watanabe, K., Masuguchi, M., Sekine,T., Shidara, S. and Hirano, S. 2008. Enhancement of gene expression by a peptide p(CHWPR) produced by Bifidobacterium lactis BB-12. Microbiol. Immunol. 52:144-155. https://doi.org/10.1111/j.1348-0421.2008.00022.x
  57. Moslehi-Jenabian, S., Vogensen, F. K. and Jespersen, L. 2011. The quorum sensing luxSgene is induced in Lactobacillus acidophilus NCFM inresponse to Listeria monocytogenes. Int. J. Food Microbiol. 149:269-273. https://doi.org/10.1016/j.ijfoodmicro.2011.06.011
  58. Munoz-Provencio, D., Rodriguez-Diaz, J., Collado, M. C., Langella, P., BermudezHumaran, L. G. and Monedero, V. 2012. Functional analysis of the Lactobacillus casei BL23 sortases. Appl. Environ. Microbiol. 78:8684-8693. https://doi.org/10.1128/AEM.02287-12
  59. Nybom, S. M., Salminen, S. J. and Meriluoto, J. A. 2008. Specific strains of probiotic bacteria are efficient in removal of several different cyanobacterial toxinsfrom solution. Toxicon 52:214-220. https://doi.org/10.1016/j.toxicon.2008.04.169
  60. Papadimitriou, K., Zoumpopoulou, G., Foligne, B., Voula Alexandraki, Kazou M., Pot, B. and Tsakalidou, E. 2015. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Frontiers in Microbiology 6:58.
  61. Papadimitriou, C. G., Vafopoulou-Mastrojiannaki, A., Silva, S. V., Gomes, A.-M., Malcata, F. X. and Alichanidis, E. 2007. Identification of peptides in traditional and probiotic sheep milk yoghurt with angiotensin I converting enzyme (ACE)-inhibitory activity. Food Chem. 105:647-656. https://doi.org/10.1016/j.foodchem.2007.04.028
  62. Pisano, M. B., Viale, S., Conti, S., Fadda, M. E., Deplano, M., Melis, M. P., Deiana, M. and Cosentino, S. 2014. Preliminary evaluation of probiotic properties of Lactobacillus strains isolated from Sardinian dairy products. Biomed. Res. Int. 2014:286390.
  63. Pompei, A., Cordisco, L., Amaretti, A., Zanoni, S., Matteuzzi, D. and Rossi, M. 2007. Folate production by bifidobacteria as a potential probiotic property. Appl. Environ. Microbiol. 73:179-185. https://doi.org/10.1128/AEM.01763-06
  64. Pool-Zobel, B. L., Neudecker, C., Domizlaff, I., Ji, S., Schillinger, U., Rumney, C., Moretti, M., Vilarini, I., Scassellati-Sforzolini, R. and Rowland, I. 1996. Lactobacillus- and Bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutr. Cancer 26:365-380. https://doi.org/10.1080/01635589609514492
  65. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Dore, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., MetaHIT Consortium, Bork, P., Ehrlich, S. and Wang, J. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59-65. https://doi.org/10.1038/nature08821
  66. Ravel, J., Blaser, M., Braun, J., Brown, E., Bushman, F., Chang, E., Davies, J., Dewey, K. G., Dinan, T., Dominguez-Bello, M., Erdman, S. E., Finlay, B., Garrett, W., Huffnagle, G., Huttenhower, C., Jansson, J., Jeffery, I., Jobin, C., Khoruts, A., Kong, H., Lampe, J., Ley, R., Littman, D., Mazmanian, S., Mills, D., Neish, A., Petrof, E., Relman, D., Rhodes, R., Turnbaugh, P., Young, V., Knight, R. and White, O. 2014. Human microbiome science: vision for the future, Bethesda, MD, July 24 to 26,2013. Microbiome 2:16. https://doi.org/10.1186/2049-2618-2-16
  67. Rijkers, G. T., Bengmark, S., Enck, P., Haller, D., Herz, U., Kalliomaki, M., Kudo, S., Lenoir-Wijnkoop, I., Mercenier, A., Myllyluoma, E., Rabot, S., Rafter, J., Szajewska, H., Watzl, B., Wells, J., Wolvers, D. and Antoine, J. 2010. Guidance for substantiating the evidence for beneficial effects of probiotics: Current status and recommendations for future research. J. Nutr. 140:671S-676S. https://doi.org/10.3945/jn.109.113779
  68. Saulnier, D. M., Santos, F., Roos, S., Mistretta, T. A., Spinler, J. K., Molenaar, D., Teusink, B., and Versalovic, J. 2011. Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS ONE 6:e18783. https://doi.org/10.1371/journal.pone.0018783
  69. Schlee, M., Wehkamp, J., Altenhoefer, A., Oelschlaeger, T. A., Stange, E. F. and Fellermann, K. 2007. Induction of human ${\beta}$-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect. Immun. 75:2399-2407. https://doi.org/10.1128/IAI.01563-06
  70. Sela, D. A., Chapman, J., Adeuya, A., Kim, J. H., Chen, F., Whitehead, T. R., Lapidus, A., Rokhsar, D.S., Lebrilla, C.B., German, J.B., Price, N.P., Richardson, P.M. and Mills, D.A. 2008. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci. U.S.A. 105: 18964-18969. https://doi.org/10.1073/pnas.0809584105
  71. Shimada, Y., Watanabe, Y., Wakinaka, T., Funeno, Y., Kubota, M., Chaiwangsri, T., Kurihara, S., Yamamoto. K., Katayama, T. and Ashida, H. 2015. $\alpha$-N-Acetylglucosaminidase from Bifidobacterium bifidum specifically hydrolyzes $\alpha$-linked N-acetylglucosamine at nonreducingterminus of O-glycan on gastric mucin. Appl. Microbiol. Biotechnol. 99:3941-3948. https://doi.org/10.1007/s00253-014-6201-x
  72. Siniscalco, D. and Antonucci, N. 2013. Involvement of dietary bioactive proteinsand peptides in autism spectrum disorders. Curr. Protein Pept. Sci. 14:674-679.
  73. Sodhi, C. P., Neal, M. D., Siggers, R., Sho, S., Ma, C., Branca, M. F., Prindle, T., Jr., Russo, A. M., Afrazi, A., Good, M., Brower-Sinning, R., Firek, B., Morowitz, M.J., Ozolek, J. A., Gittes, G. K., Billiar, T. R. and Hackam, D. J. 2012. Intestinal epithelial toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology 143:708-718, e701-e705.
  74. Steinberg, R. S., Silva, L. C., Souza, T. C., Lima, M. T., De Oliveira, N. L., Vieira, L. Q., Aranes, R., Miyoshi, A., Ricoli, J., Neumann, E. and Nunes, A. 2014. Safety and protective effectiveness of two strains of Lactobacillus with probiotic features in an experimental model of salmonellosis. Int. J. Environ. Res. Public Health 11:8755-8776. https://doi.org/10.3390/ijerph110908755
  75. Tan, Q., Xu, H., Aguilar, Z. P., Peng, S., Dong, S., Wang, B., Li, P., Chen, T., Yu, F. and Wei, H. 2013. Safety assessment and probiotic evaluation of Enterococcus faecium YF5 isolated from sourdough. J. Food Sci. 78:M587-M593. https://doi.org/10.1111/1750-3841.12079
  76. Tassell, M. L. V., and Miller, M. J. 2011. Lactobacillus adhesion to mucus. Nutrients 3:613-636. https://doi.org/10.3390/nu3050613
  77. Turpin, W., Humblot, C., Noordine, M. L., Thomas, M. and Guyot, J. P. 2012. Lactobacillaceae and cell adhesion: Genomic and functional screening. PLoS ONE7:e38034. https://doi.org/10.1371/journal.pone.0038034
  78. Turroni, F., Foroni, E., O'connellMotherway, M., Bottacini, F., Giubellini, V., Zomer, A., Ferrarini, A., Delledonne, M., Zhang, Z., van Sinderen, D. and Ventura, M. 2010. Characterization of the serpin-encoding gene of Bifidobacterium breve 210B. Appl. Environ. Microbiol. 76:3206-3219. https://doi.org/10.1128/AEM.02938-09
  79. Turroni, F., Serafini, F., Foroni, E., Duranti, S., O'connellMotherway, M., Taverniti, V., Mangifesta, M., Milani, C., Viappiani, A., Roversi, T., Sanchez, B., Santoni, A., Gioiosa, L., Ferrarini, A., Delledonne, M., Margolles, A., Piazza, L., Palanza, P., Bolchi, A., Guglielmetti, S., van Sinderen, D. and Ventura, M. 2013. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions. Proc. Natl. Acad. Sci. U.S.A. 110:11151-11156. https://doi.org/10.1073/pnas.1303897110
  80. Upadrasta, A., Stanton, C., Hill, C., Fitzgerald, G. and Ross, R. P. 2011. "Improvingthe stress tolerance of probiotic cultures: recent trends and future directions," inStress Responses of Lactic Acid Bacteria, eds E. Tsakalidou and K. Papadimitriou (New York: Springer), 395-438.
  81. Van den Abbeele, P., Roos, S., Eeckhaut, V., Mackenzie, D. A., Derde, M., Verstraete,W., Marzorati, M., Possemiers, S., Vanhoecke, B., Van Immerseel, F. and Van de Wiele, T. 2012. Incorporating a mucosal environment in a dynamic gut modelresults in a more representative colonization by lactobacilli. Microb. Biotechnol. 5:106-115. https://doi.org/10.1111/j.1751-7915.2011.00308.x
  82. Vastano, V., Salzillo, M., Siciliano, R. A., Muscariello, L., Sacco, M. and Marasco, R. 2014. The E1 betasubunit of pyruvate dehydrogenase is surface-expressed in Lactobacillus plantarum and binds fibronectin. Microbiol. Res. 169: 121-127. https://doi.org/10.1016/j.micres.2013.07.013
  83. Verdu, E. F. and Collins, S. M. 2004. Microbial-gut interactions in health anddisease. Irritable bowel syndrome. Best Pract. Res. Clin. Gastroenterol. 18:315-321. https://doi.org/10.1016/j.bpg.2003.11.003
  84. Viaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillere, R., Hannani, D., Enot, D., Pfirschke, C., Engblom, C., Pittet, M., Schlitzer, A., Ginhoux, F., Apetoh, L., Chachaty, E., Woerther, P., Eberl, G., Berard, M., Ecobichon, C., Clermont, D., Bizet, C., Gaboriau-Routhiau, V., Cerf-Bensussan, N., Opolon, P., Yessaad, N., Vivier, E., Ryffel, B., Elson, C., Dore, J., Kroemer, G., Lepage, P., Boneca, I., Ghiringhelli, F. and Zitvogel, L. 2013. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342:971-976. https://doi.org/10.1126/science.1240537
  85. Wang, L., Cao, H., Liu, L., Wang, B., Walker, W. A., Acra, S.A. and Yan, F. 2014. Activation of epidermal growth factor receptor mediates mucin production stimulated byp40, a Lactobacillus rhamnosus GG-derived protein. J. Biol. Chem. 289:20234-20244. https://doi.org/10.1074/jbc.M114.553800
  86. Westermann, C., Zhurina, D., Baur, A., Shang, W., Yuan, J. and Riedel, C. 2012. Exploring the genome sequence of Bifidobacterium bifidum S17 for potential players in host-microbe interactions. Symbiosis 58: 191-200. https://doi.org/10.1007/s13199-012-0205-z
  87. Yoshida, E., Sakurama, H., Kiyohara, M., Nakajima, M., Kitaoka, M., Ashida, H., Hirose, J., Katayama, T., Yamamoto, K. and Kumagai, H. 2012. Bifidobacterium longum subsp. infantis uses two different ${\beta}$-galactosidases for selectively degrading type-1 and type-2 human milkoligosaccharides. Glycobiology 22: 361-368. https://doi.org/10.1093/glycob/cwr116
  88. Zheng, Y., Lu, Y., Wang, J., Yang, L., Pan, C. and Huang, Y. 2013. Probioticproperties of Lactobacillus strains isolated from Tibetan kefir grains. PLoS ONE8: e69868. https://doi.org/10.1371/journal.pone.0069868

피인용 문헌

  1. Manufacture of Functional Koumiss supplemented with Cichorium intybus L. (chicory) Extract - Preliminary Study vol.35, pp.1, 2016, https://doi.org/10.22424/jmsb.2017.35.1.001
  2. Sensory Profiles of Koumiss with added Crude Ingredients extracted from Flaxseed (Linum usitatissimum L.) vol.35, pp.3, 2016, https://doi.org/10.22424/jmsb.2017.35.3.169
  3. Survey and Microbiological Quality Control of Commercial Probiotics for Livestock in South Korea vol.53, pp.6, 2016, https://doi.org/10.14397/jals.2019.53.6.75