DOI QR코드

DOI QR Code

가스엔진용 유기랭킨사이클의 설계 및 제작

Design and Construction of a Bottoming Organic Rankine Cycle System for an Natural Gas Engine

  • 이민석 (부산대학교 기계공학부) ;
  • 백승동 (부산대학교 기계공학부) ;
  • 성태홍 (부산대학교 기계공학부) ;
  • 김현동 (부산대학교 기계공학부) ;
  • 채정민 (한국가스공사 가스기술연구원) ;
  • 조영아 (한국가스공사 가스기술연구원) ;
  • 김형태 (한국가스공사 가스기술연구원) ;
  • 김경천 (부산대학교 기계공학부)
  • Lee, Minseog (School of Mechanical Engineering, Pusan National University) ;
  • Baek, Seungdong (School of Mechanical Engineering, Pusan National University) ;
  • Sung, Taehong (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Hyun Dong (School of Mechanical Engineering, Pusan National University) ;
  • Chae, Jung Min (KOGAS R&D research institute New Energy Technology Center) ;
  • Cho, Young Ah (KOGAS R&D research institute New Energy Technology Center) ;
  • Kim, Hyoungtae (KOGAS R&D research institute New Energy Technology Center) ;
  • Kim, Kyung Chun (School of Mechanical Engineering, Pusan National University)
  • 투고 : 2016.07.19
  • 심사 : 2016.12.15
  • 발행 : 2016.12.31

초록

천연가스용으로 개조된 가스엔진에서 방출되는 폐열을 활용하기 위한 유기 랭킨사이클 (Organic Rankine Cycle: ORC) 발전시스템을 설계 및 제작하였다. 이 연구에서는 개조된 가스엔진의 폐열을 실험적으로 분석한 데이터를 바탕으로 구성한 ORC 시스템의 컴포넌트를 설계하고 제작하였다. ORC 시스템에는 2개의 판형 열교환기와 5kW급 팽창기, 다단 펌프가 사용되었으며, 전기 히터를 이용하여 ORC 시스템의 열역학적 성능을 분석하였다. 또한, 실제로 가스엔진과 연동하여 작동 특성을 파악하기 위한 실험을 수행하였다. ORC 시스템에 열량을 공급해주는 2대의 가스엔진을 사용하였다. 열원모사실험 결과, 열원온도 $110^{\circ}C$에서 축동력 5.22kW가 발생, 압력비 7.41, 열효율 9.09%가 계산되어졌으며, 엔진연동실험에서는 고온수 온도 $86^{\circ}C$에서 축동력 2kW가 발생, 이 때의 압력비는 3.75, 열효율 6.45%가 계산되었다.

ORC system was designed and constructed for utilizing the heat of the exhaust gas and coolant released from the gas engine which was modified to use natural gas as a fuel. In this paper the components of the ORC system were designed and manufactured based on measured data of the gas engine. The components are composed of two plate heat exchanger, the 5kW-class expander and multi stage centrifugal pump. The thermodynamic performance of the ORC system was analyzed by using the electric heater. Also, the developed ORC system was implemented to modified natural gas engine. Two gas engines were used to supply heat to the ORC system. As a result of test bench, when the heat source temperature is $110^{\circ}C$ expander shaft power, the pressure ratio and cycle efficiency is 5.22kW, 7.41, 9.09%. As a result of field test, when the heat source temperature is $86^{\circ}C$ expander shaft power, the pressure ratio and cycle efficiency is 2kW, 3.75, 6.45%.

키워드

참고문헌

  1. Endo, T., Kawajiri, S., Kojima, Y., Takahashi, K., Baba, T., Ibaraki, S. and Takahashi, T., "Study on maximizing exergy in automotive engines", Society of Automotive Engineers (SAE), 2007-01-0257, (2007)
  2. Yang, M. H. and Yeh, R. H., "Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine", Applied Energy, 149, 1-12, (2015) https://doi.org/10.1016/j.apenergy.2015.03.083
  3. Macian, V., Serrano, J. R., Dolz, V. and Sanchez, J., "Methodology to design a bottoming Rankine cycle, as a waste energy recovering system in vehicles. Study in a HDD engine", Applied Energy, 104, 758-771, (2013) https://doi.org/10.1016/j.apenergy.2012.11.075
  4. Shu, G., Li, X., Tian, H., Liang, X., Wei, H. and Wang, X., "Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle", Applied Thermal Engineering, 119, 204-217, (2014) https://doi.org/10.1016/j.apenergy.2013.12.056
  5. Sprouse, C. and Depcik, C., "Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery", Applied Thermal Engineering, 51, 711-722, (2013) https://doi.org/10.1016/j.applthermaleng.2012.10.017
  6. Vaja, I. and Gambarotta, A., "Inertnal combustion engine (ICE) bottoming with organic Rankine cycles (ORCs)", Energy, 35, 1084-1093, (2010) https://doi.org/10.1016/j.energy.2009.06.001
  7. Srinivasan, K. K., Mago, P. J. and Krishnan, S. R., "Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an organic Rankine cycle", Energy, 35, 2387-2399, (2010) https://doi.org/10.1016/j.energy.2010.02.018
  8. Larsen, U., Pierobon, L., Haglind, F. and Gabrielii, C., "Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection", Energy, 55, 803-812, (2013) https://doi.org/10.1016/j.energy.2013.03.021
  9. Yu, G., Shu, G., Tian, H., Wei, H. and Liu, L., "Simulation and thermodynamic analysis of a bottoming organic Rankine cycle (ORC) of diesel engine (DE)", Energy, 51, 281-290, (2013) https://doi.org/10.1016/j.energy.2012.10.054
  10. Shu, G., Liu, L., Tian, H., Wei, H. and Yu, G., "Parametric and working fluid analysis of a dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery", Applied Thermal Engineering, 51, 711-722, (2013) https://doi.org/10.1016/j.applthermaleng.2012.10.017
  11. Zhou, Y., Wu, Y., Li, F. and Yu, L., "Performance analysis of zeotropic mixtures for the dual-loop system combined with internal combustion engine", Energy Conversion and Management, 118, 406-414, (2016) https://doi.org/10.1016/j.enconman.2016.04.006
  12. Chen, H., Goswami, D. Y. and Stefanakos, E. K., "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat", Renewable and sustainable energy reviews, 14, 3059-3067, (2010) https://doi.org/10.1016/j.rser.2010.07.006
  13. EES: Engineering Equation Solver, fChart Software Inc., 2015
  14. Taylor, B. N. and Chris, E. K., "Guidelines for evaluating and expressing the uncertainty of NIST measurement results", National Institute of Standards and Technology Technical Note, 1297, (1994)
  15. Zanelli, R. and Favrat, D., "Experimental investigation of a hermetic scroll expander-generator", In: Proceedings of the 12th international com pressor engineering conference at Purdue, 459-464, (1994)
  16. Lemort, V., Quoilin, S., Cuevas, C. and Lebrun, J., "Testing and modeling a scroll expander integrated into an Organic Rankine Cycle", Applied Thermal Engineering, 29, 3094-3125, (2009) https://doi.org/10.1016/j.applthermaleng.2009.04.013

피인용 문헌

  1. A Study on Wearable Airbag System Applied with Convolutional Neural Networks for Safety of Motorcycle vol.15, pp.2, 2016, https://doi.org/10.1007/s42835-020-00353-5
  2. Parallel Neural Network-Convolutional Neural Networks for Wearable Motorcycle Airbag System vol.15, pp.6, 2016, https://doi.org/10.1007/s42835-020-00507-5
  3. Wearable Airbag System for Real-Time Bicycle Rider Accident Recognition by Orthogonal Convolutional Neural Network (O-CNN) Model vol.10, pp.12, 2021, https://doi.org/10.3390/electronics10121423