DOI QR코드

DOI QR Code

Photochromic Spiropyran-Functionalized Organic-Inorganic Hybrid Mesoporous Silica for Optochemical Gas Sensing

광화학적 가스 센싱을 위한 광변색 스피로피란 개질된 유기-무기 하이브리드 메조포러스 실리카

  • Park, Sung Soo (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University)
  • Received : 2016.12.04
  • Accepted : 2016.12.14
  • Published : 2016.12.30

Abstract

In this work, mesoporous silica (SBA-15) was synthesized via self-assembly process using triblock copolymer ($PEO_{20}PPO_{70}PEO_{20}$, P123) as template and tetraethyl orthosilicate (TEOS) as silica source under acidic condition. SBA-15 have high surface area ($704m^2g^{-1}$) and uniform pore size (8.4 nm) with well-ordered hexagonal mesostructure. Spiropyran-functionalized SBA-15 (Spiropyran-SBA-15) was synthesized via post-synthesis process using 3-(triethoxysilyl)propyl isocyanate (TESPI) and 1-(2-Hydroxyethyl)-3,3-dimethy-lindolino-6'-nitrobenzopyrylo-spiran (HDINS). Spiropyran-SBA-15 was produced with hexagonal array of mesopores without damage of mesostructre. Surface area and pore size of Spiropyran-SBA-15 were $651m^2g^{-1}$ and 8.0 nm, respectively. Optochemical properties of Spiropyran-SBA-15 was studied with chemical vapors such as EtOH, THF, $CHCl_3$, Acetone and HCl. Main peaks of photofluorescence of Spiropyran-SBA-15 exhibited blue shift in the range of 603.4~592.1 nm after exposure under EtOH, THF, $CHCl_3$, and Acetone vapors. Normalized peak intensities decreased in the range of 0.8~0.3. The main peak of photofluorescence of Spiropyran-SBA-15 showed significant blue shift of 592.1 nm after exposure under HCl vapor, while normalized peak intensity decreased to 0.1.

본 연구에서는 트리블럭 공중합체($PEO_{20}PPO_{70}PEO_{20}$, P123)를 주형으로 사용하고 테트라에틸오르소실리케이트(Tetraethyl orthosilicate, TEOS)를 실리카원으로 사용하여 산 조건 하에서 자기조립 과정을 거친 후 메조포러스 실리카(SBA-15)를 합성하였다. SBA-15는 높은 표면적($704m^2g^{-1}$), 균일한 나노세공(8.4 nm) 그리고 잘 배열된 육방체 구조를 가진다. 스피로피란(Spiropyran) 기가 개질된 SBA-15 (Spiropyran-SBA-15)는 3-(트리에톡시실릴)프로필 이소시아네이트(TESPI)와1-(2-하이드록시에틸)-3,3-이메틸인돌리노-6'-니트로벤조프릴로스피렌(HDINS)을 이용하여 SBA-15에 후처리하여 합성하였다. Spiropyran-SBA-15는 개질 후 나노세공 구조의 손상없이 잘 배열된 육방체 구조를 가졌다. 그리고 표면적과 세공 크기는 각각 $651m^2g^{-1}$와 8.0 nm이었다. 그리고 다양한 화학 기체(EtOH, THF, $CHCl_3$, Acetone, HCl)를 이용하여 Spiropyran-SBA-15의 광화학적 특성을 연구하였다. 유기분자 기체들(EtOH, THF, $CHCl_3$, Acetone)에 대한 광 형광 스펙트라의 주요 발광 피크는 603.4 nm부터 592.1 nm까지 blue shift하였다. 피크 세기는 0.8부터 0.3까지 감소하였다. Spiropyran-SBA-15시료를 HCl 기체에 노출한 후 측정한 광 형광 스펙트럼은 현저한 blue shift를 보여주었다. 광 형광 스펙트럼은 592.1 nm까지 이동하였다. 또한, 광 형광 스펙트럼의 정규화된 피크 세기는 0.1까지 감소하였다.

Keywords

References

  1. C. Reichardt and Solvatochromic, Chem. Rev., 94, 2319 (1994). https://doi.org/10.1021/cr00032a005
  2. I. Shimizu, H. Kokado, and E. Inoue, Bull. Chem. Soc. Jpn., 42, 1730 (1969). https://doi.org/10.1246/bcsj.42.1730
  3. A. Yamano and H. Kozuka, J. Phys. Chem. B, 113, 5769 (2009).
  4. M.-Q. Zhu, L. Zhu, J. J. Han, W. Wuwei, J. K. Hurst, and A. D. Q. Li, J. Am. Chem. Soc., 128(13), 4303 (2006). https://doi.org/10.1021/ja0567642
  5. B. Lv, Z. Wu, C. Ji, W. Yang, D. Yan, and M. Yi, J. Mater. Chem. C, 3, 8519 (2015).
  6. E. Berman, R. E. Fox, and F. D. Thomson, J. Am. Chem. Soc., 81, 5605 (1959). https://doi.org/10.1021/ja01530a021
  7. C. Sanchez, B. Lebeau, F. Chaput, and J.-P. Boilot, Adv. Mater., 15, 1969 (2003). https://doi.org/10.1002/adma.200300389
  8. M.-S. Wang, G. Xu, Z.-J. Zhang, and G.-C. Guo, Chem. Commun., 46, 361 (2010). https://doi.org/10.1039/B917890B
  9. J. Allouche, A. L. Beulze, J.-C. Dupin, J.-B. Ledeuil, S. Blanc, and D. Gonbeau, J. Mater. Chem., 20, 9370 (2010). https://doi.org/10.1039/c0jm01780a
  10. J. B. Flannery Jr., J. Am. Chem. Soc., 90, 5660 (1968). https://doi.org/10.1021/ja01023a003
  11. N. W. Tyer Jr. and R. S. Becker, J. Am. Chem. Soc., 92, 1295 (1970). https://doi.org/10.1021/ja00708a032
  12. A. S. Kholmanskii and K. M. Dyumaev, Russ. Chem. Rev., 56, 136 (1987). https://doi.org/10.1070/RC1987v056n02ABEH003262
  13. S.-R. Keum, M.-S. Hur, P. M. Kazmaier, and E. Buncel, Can. J. Chem., 69, 1940 (1991). https://doi.org/10.1139/v91-279
  14. A. K. Chibisov and H. Gorner, Chem. Phys., 237, 425 (1998). https://doi.org/10.1016/S0301-0104(98)00291-2
  15. D. Levy, S. Einhorn, and D. Avnir, J. Non-Cryst. Solids, 113, 137 (1989). https://doi.org/10.1016/0022-3093(89)90004-5
  16. G. Wirnsberger, B. J. Scott, B. F. Chmelka, and G. D. Stucky, Adv. Mater., 12, 1450 (2000). https://doi.org/10.1002/1521-4095(200010)12:19<1450::AID-ADMA1450>3.0.CO;2-4
  17. A. Leaustic, A. Dupont, P. Yu, and R. Clement, New J. Chem., 25, 1297 (2001). https://doi.org/10.1039/b104456g
  18. N. Andersson, P. Alberius, J. Örtegren, M. Lindgren, and L. Bergstrom, J. Mater. Chem., 15, 3507 (2005). https://doi.org/10.1039/b505319f
  19. T. Suzuki, F.-T. Lin, S. Priyadashy, and S. G. Weber, Chem. Commun., 24, 2685 (1998).
  20. D. Y. Hur and E. J. Shin, Bull. Korean Chem. Soc., 36, 104 (2015). https://doi.org/10.1002/bkcs.10027
  21. B. Schaudel, C. Guermeur, C. Sanchez, K. Nakatani, and J. A. Delaire, J. Mater. Chem., 7, 61 (1997). https://doi.org/10.1039/a606859f
  22. I. Casades, M. Alvaro, H. Garcia, and M. N. Pillai, Photochem. Photobiol. Sci., 1, 219 (2002). https://doi.org/10.1039/b110936g
  23. Y.-S. Nam, I. Y. O. Yarimaga, I. S. Park, D.-H. Park, S. Song, J.-M. Kim, and C. W. Lee, Chem. Commun., 50, 4251 (2014). https://doi.org/10.1039/c4cc00567h
  24. M. E. Genovese, A. Athanassiou, and D. Fragouli, J. Mater. Chem. A, 3, 22441 (2015). https://doi.org/10.1039/C5TA06118K
  25. F. Khakzad, A. R. Mahdavian, H. Salehi-Mobarakeh, A. R. Shirin-Abadi, and M. Cunningham, Polymer, 101, 274 (2016). https://doi.org/10.1016/j.polymer.2016.08.073
  26. L. Chen, J. Wu, C. Schmuck, and H. Tian, Chem. Commun., 50, 6443, (2014). https://doi.org/10.1039/c4cc00670d
  27. S. Wan, Y. Zheng, J. Shen, W. Yang, and M. Yin, ACS Appl. Mater. Interfaces, 6, 19515 (2014). https://doi.org/10.1021/am506641t
  28. Q.-Hua Y. L. Fan, W.-H. Chan, A. W. M. Lee, and S. Shuang, RSC Adv., 3, 15762 (2013). https://doi.org/10.1039/c3ra41456f
  29. S. Scarmagnani, Z. Walsh, C. Slater, N. Alhashimy, B. Paull, M. Mack, and D. Diamond, J. Mater. Chem., 18, 5063 (2008). https://doi.org/10.1039/b810080b
  30. Y. Shiraishi, Y. Matsunaga, and T. Hirai, Chem. Commun., 48, 5485 (2012). https://doi.org/10.1039/c2cc30258f
  31. Y. Shiraishi, S. Sumiya, and T. Hirai, Chem. Commun., 47, 4953 (2011). https://doi.org/10.1039/c1cc10467e
  32. J. S. Beck, C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, J. Am. Chem. Soc., 114, 10834 (1992). https://doi.org/10.1021/ja00053a020
  33. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature, 359, 710 (1992). https://doi.org/10.1038/359710a0
  34. D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Science, 279, 548 (1998). https://doi.org/10.1126/science.279.5350.548
  35. X. S. Zhao, G. Q. (Max) Lu, and G. J. Millar, Ind. Eng. Chem. Res., 35, 2075 (1996). https://doi.org/10.1021/ie950702a
  36. G. J. de A. A. Soler-Illiaa, E. L. Crepaldia, D. Grossoa, and C. Sanchez, Current Opinion in Colloid and Inter. Science, 8, 109 (2003). https://doi.org/10.1016/S1359-0294(03)00002-5
  37. C. Liang, Z. Li, and S. Dai, Angew. Chem. Int. Ed., 47, 3696 (2008). https://doi.org/10.1002/anie.200702046
  38. S.-H. Wu, C.-Y. Mou, and H.-P. Lin, Chem. Soc. Rev., 42, 3862 (2013). https://doi.org/10.1039/c3cs35405a
  39. D. E. De Vos, M. Dams, B. F. Sels, and P. A. Jacobs, Chem. Rev., 102, 3615 (2002). https://doi.org/10.1021/cr010368u
  40. S. S. Park and C.-S. Ha, The Chemical Record, 6, 32 (2006). https://doi.org/10.1002/tcr.20070
  41. F. Hoffmann, M. Cornelius, J. Morell, and M. Froba, Angew. Chem. Int. Ed., 45, 3216 (2006). https://doi.org/10.1002/anie.200503075
  42. S. S. Park, M. S. Moorthy, and C.-S. Ha, NPG Asia Materials, 6, 1 (2014).
  43. K. Ariga, A. Vinu, J. P. Hill, and T. Mori, Coord. Chem. Reviews, 251, 2562 (2007). https://doi.org/10.1016/j.ccr.2007.02.024
  44. A. Walcarius and L. Mercier, J. Mater. Chem., 20, 4478 (2010). https://doi.org/10.1039/b924316j
  45. Y.-W. Yang, Med. Chem. Commun., 2, 1033 (2011). https://doi.org/10.1039/c1md00158b
  46. P. Yang, S. Gaib, and J. Lin, Chem. Soc. Rev., 41, 3679 (2012). https://doi.org/10.1039/c2cs15308d
  47. Z. Tao, RSC Adv., 4, 18961 (2014). https://doi.org/10.1039/c3ra47166g
  48. M. Colilla, B. Gonzaleza, and M. Vallet-Regi, Biomater. Sci., 1, 114 (2013). https://doi.org/10.1039/C2BM00085G
  49. A. Popat, S. B. Hartono, F. Stahr, J. Liu, S. Z. Qiao, and G. Q. (Max) Lu, Nanoscale, 3, 2801 (2011). https://doi.org/10.1039/c1nr10224a
  50. T. Wagner, S. Haffer, C. Weinberger, D. Klaus, and M. Tiemann, Chem. Soc. Rev., 42, 4036 (2013). https://doi.org/10.1039/C2CS35379B
  51. T. A. Fayed, M. H. Shaaban, M. N. El‑Nahass, and F. M. Hassan, Inter. J. Chem. and App. Bio. Sci., 1(2), S74 (2015).
  52. S. Alberti, G. J. A. A. Soler-Illia, and O. Azzaroni, Chem. Commun., 51, 6050 (2015). https://doi.org/10.1039/C4CC10414E
  53. C. T. Burns, S. Y. Choi, M. L. Dietz, and M. A. Firestone, Separ. Sci. and Tech., 43, 2503 (2008). https://doi.org/10.1080/01496390802122311

Cited by

  1. 유/무기 하이브리드형 실리카 나노세공체 vol.21, pp.3, 2016, https://doi.org/10.17702/jai.2020.21.3.113