DOI QR코드

DOI QR Code

Analysis of cause of engine failure during power generation using biogas in sewage treatment plant

하수처리장 바이오가스를 이용한 발전시 가스엔진의 고장원인 분석

  • Kim, Gill Jung (Graduate School of Energy& Environment, Seoul National University of Science&Technology) ;
  • Kim, Lae Hyun (Department of Chemical & Biomolecular Engineering, Seoul National University of Science&Technology)
  • 김길정 (서울과학기술대학교 에너지환경대학원) ;
  • 김래현 (서울과학기술대학교 화공생명공학과)
  • Received : 2016.10.28
  • Accepted : 2016.12.15
  • Published : 2016.12.30

Abstract

In this study, we analyzed the causes of major faults in the biogas plant through the case of gas engine failure when cogenerating electricity and heat using biogas as a fuel in the actual sewage treatment plant and suggested countermeasures. Hydrogen sulfide in the biogas entering the biogas engine and water caused by intermittent malfunction of the water removal system caused intercooler corrosion in the biogas engine. In addition, the siloxane in the biogas forms a silicate compound with silicon dioxide, which causes scratches and wear of the piston surface and the inner wall of the cylinder liner. The substances attached to the combustion chamber and the exhaust system were analyzed to be combined with hydrogen sulfide and other impurities. It is believed that hydrogen sulfide was supplied to the desulfurization plant for a long period of time because of the high content of hydrogen sulfide (more than 50ppm) in the biogas and the hydrogen sulfide was introduced into the engine due to the decrease of the removal efficiency due to the breakthrough point of the activated carbon in the desulfurization plant. In addition, the hydrogen sulfide degrades the function of the activated carbon for siloxane removal of the adsorption column, which is considered to be caused by the introduction of unremoved siloxane waste into the engine, resulting in various types of engine failure. Therefore, hydrogen sulfide, siloxane, and water can be regarded as the main causes of the failure of the biogas engine. Among them, hydrogen sulfide reacts with other materials causing failure and can be regarded as a substance having a great influence on the pretreatment process. As a result, optimization of $H_2S$ removal method seems to be an essential measure for stable operation of the biogas engine.

본 연구에서는 실제 난지 하수처리장에서 바이오가스를 연료로 사용하여 발전할 때, 가스엔진에서 발생하는 고장 사례에 대한 조사와 분석을 통해 바이오가스 플랜트의 주요 고장원인을 분석하고, 그 대책을 제시하였다. 바이오 가스엔진에 유입되는 바이오 가스 속의 황화수소와 수분 제거설비의 간헐적인 오작동으로 인한 수분이 바이오 가스엔진의 인터쿨러 부식을 초래하였다. 또한 바이오가스 속의 실록산이 이산화규소와 규산염 화합물을 형성하여 피스톤 표면 및 실린더라이너 내벽의 긁힘과 마모 등의 손상을 유발하였다. 연소실과 배기가스 설비에 부착된 물질들은 황화수소와 다른 불순물질이 결합한 것으로 분석되었다. 이러한 원인으로는 바이오 가스 속의 고함량(50ppm이상)의 황화수소가 탈황설비에 장기간 공급되었고, 탈황설비내 활성탄의 파과점 도달에 따른 제거효율 저하 때문에 황화수소가 엔진으로 유입됨으로써 발생한 것으로 사료된다. 또한, 황화수소는 흡착탑의 실록산 제거용 활성탄 기능을 저하시킴으로써 제거되지 않은 실록산 화합물이 엔진으로 유입되어 다양한 형태의 엔진고장을 유발한 것으로 판단된다. 따라서, 황화수소와 실록산, 수분은 바이오 가스엔진 고장의 주요 원인으로 볼 수 있으며, 이 중 황화수소는 고장을 일으키는 다른 물질과 반응하며, 전처리 공정에 중대한 영향을 미치는 물질로 볼 수 있다. 결과적으로, $H_2S$ 제거방법의 최적화가 안정적인 바이오 가스엔진 운영을 위한 필수적인 대책으로 사료된다.

Keywords

References

  1. Jung, Y. K., 2007, Sludge into biosolids processing, disposal and utilization, Dongwha Technology.
  2. Yoon, J. S., 2010, Analysis of GHG reduction potential and policy effects of energy conversion from waste resources in Korea, Doctor thesis, University of Seoul, Korea.
  3. Kim, Y. J. and Kang, Y. T., 2009, Study on biogas purification technologies, Proceedings of the SAREK 2009 Winter Annual Conference, pp. 694-699.
  4. 수도권매립지공사, 2013, Biogas중의 황화합물 및 실록세인 정제를 위한 흡착제의 흡착특성 연구, pp.20-21
  5. Ryckebosch, E., Drouillon, M. and Vervaeren, H., 2011, Techniques for transformation of biogas to biomethane, Journal of Biomass & Bioenergy, Vol. 35, pp. 1633-1645. https://doi.org/10.1016/j.biombioe.2011.02.033
  6. Montanari, T., Finocchio, E., Salvatore, E., Garuti, G., Giordano, A., Pistarino, C., Busca, G., 2011, $CO_2$separation and landfill biogas upgrading: A comparison of 4A and 13X zeolite adsorbents, Energy, Vol. 36, pp. 314-319. https://doi.org/10.1016/j.energy.2010.10.038
  7. Bae, M. S., Lee, J. Y., Lee. J. G, 2016, Process Technologies of Reforming, Upgrading and Purification of Anaerobic Digestion Gas for Fuel Cells, Transactions of the Korean Hydrogen and New Energy Society, Vol. 27, No. 2, pp. 135-143 https://doi.org/10.7316/KHNES.2016.27.2.135
  8. Beatrice Castellani, Federico Rossi, Mirko Filipponi, Andrea Nicolini, 2014, Hydrate-based removal of carbon dioxide and hydrogen sulphide from biogas mixtures : Experimental investigation and energy evaluationsJournal of Biomass and Bioenergy pp. 330-338
  9. Bae, J. G., 2011, Biogas to energy technologies, Korea Environment Corporation.
  10. Tower, P. and Wetzel, J., 2006, Removing siloxanes from a gas stream using a mineral based adsorption media. Pat. US20060000352 A1.
  11. Bae, J. H., 2010, Wastes to energy : Biogas production and utilization, Dong wha Technology.
  12. Bae, J. K., 2008, Technology of Biomass and Biogasification, A-Jin.
  13. Truong, LVA. and Abatzoglou, N., 2005, A $H_2S$ Reactive Adsorption Process for the Purification of Biogas prior to Its Use as a Bioenergy Vector, Biomass Bioenergy, Vol. 29, No. 2, pp. 142-151. https://doi.org/10.1016/j.biombioe.2005.03.001
  14. Lee, J. G., Jun, J. H., Park, K. H., Choi, D. S. and Park, J. Y., 2007, Anaerobic Digester Gas Purification for the Fuel Gas of the Fuel Cell, Transactions of the Korean Hydrogen and New Energy Society, Vol. 18, No. 2, pp. 164-170.
  15. Pepply, B. A., 2006, Biomass for fuel cell; A technical and Economic Assessment, Inter. J. Green Energy, Vol. 3, pp. 15-19.
  16. Choi, D. Y., Jang, S. C., Ahn, B. S. and Choi, D. K., 2006, $H_2S$ Adsorption Characteristics of KOH Impregnated Activated Carbons, J. Korean Ind. Eng. Chem., Vol. 17, No. 3, pp. 280-285.
  17. BC Innovation Council, 2008, Feasibility study - Biogas upgrading and grid injection in Fraser Valley, British Columbia.
  18. Steve, M. Z., 2003, Removal of hydrogen sulfide from biogas using cow-manure compost, Master of Science Thesis, Cornell University, USA.
  19. Friedhelm, H., Gunther, W., Matthias, S., Susanne, C., 2010, D14: Report on the optimised CHP use in agricultural biogas plants and increased degree of efficiency, GE Jenbacher.
  20. Seo, D. C., Yun, S. K., Kim, M. J., Oh, I. K., Kwon, S. K., Song, S. S. and Chun, S. K., 2007, Determination of organic silicon compounds(siloxanes) in landfill gas, J. Korea Society of Waste Management, Vol. 24, No. 5, pp. 391-399.
  21. Seo, D. C., Song, S. S. and Won, J. C., 2009, Removal of volatile organic silicon compounds (siloxanes) from landfill gas by adsorbents, J. Korean Society of Environ. Engineers, Vol. 31, No. 9, pp. 793-802.
  22. Song, S. S., 2009, Characterization and adsorptive removal methods of siloxanes in landfill gas, Doctor thesis, Inha University, Korea.
  23. Hayes, H. C., Graening, G. J., Saeed, S. and Kao, S., 2003, A summary of available analytical methods for the determination of siloxanes in biogas, SWANA 26th Annual Landfill Gas Symposium, Tampa, Florida, US.
  24. Schweigkofler, M. and Niessner, R., 1999, Determination of siloxanes and VOC in landfill gas sewage gas by canister sampling and GC-MS/AES analysis, Environ. Sci. & Technol., Vol. 33, No. 20, pp. 3680-3685. https://doi.org/10.1021/es9902569
  25. Wheless, E. and Pierce, J., 2004, Siloxanes in landfill and Digester gas update, 27th Annual Landfill Gas Symposium Proceedings, SWANA (Solid Waste Association of North America), San Antonio, Texas, US, pp. 22-25.
  26. Environmental Agency, 2002, Guideline on gas treatment technologies for landfill gas engine, Environmental Agency, Bristol, UK.
  27. Vesterager, N. and Matthiesen, D., 2004, Advanced prediction, monitoring and controlling of anaerobic digestion processes behaviour towards biogas usage in fuel cells, WP 8. 2nd Progress and Assessment Report, Available online.
  28. Hausler, T. and Schreier, W., 2005, Analyse siliziumorganischer verbindungen im deponiegas sowie co-messungen zur brandfruherkennung, Verlag Abfall aktuell-Brand 16-Stillegung und Nachsorge von Deponien, pp. 241-249.
  29. Beese, J., 2007, Betriebsoptimierung der motorischen gasverwertung durch den einsatz von gasreinigungsanlagen; Siloxa Engineering AG, Presentation at Deponiegas 2007 FH Trier Germany.