DOI QR코드

DOI QR Code

Validation of Learning Progressions for Earth's Motion and Solar System in Elementary grades: Focusing on Construct Validity and Consequential Validity

초등학생의 지구의 운동과 태양계 학습 발달과정의 타당성 검증: 구인 타당도 및 결과 타당도를 중심으로

  • Received : 2016.02.06
  • Accepted : 2016.02.26
  • Published : 2016.02.29

Abstract

The purpose of this study is to validate learning progressions for Earth's motion and solar system from two different perspectives of validity. One is construct validity, that is whether a hypothetical pathway derived from our study of LPs is supported by empirical evidence of children's substantive development. The other is consequential validity, which refers to the impact of LP-based adaptive instruction on children's improved learning outcomes. For this purpose, 373 fifth-grade students and 17 teachers from six elementary schools in Seoul, Kangwon province, and Gwangju participated. We designed LP-based adaptive instruction modules delving into the unit of 'Solar system and stars.' We also employed 13 ordered multiple-choice items and analyzed the transitions of children's achievement levels based on the results of pre-test and post-test. For testing construct validity, 64 % of children in the experimental group showed improvement according to the hypothetical pathways. Rasch analysis also supports this results. For testing consequential validity, the analysis of covariance between experimental and control groups revealed that the improvement of experimental group is significantly higher than the control group (F=30.819, p=0.000), and positive transitions of children's achievement level in the experimental group are more dominant than in the control group. In addition, the findings of applying Rasch model reveal that the improvement of students' ability in the experimental group is significantly higher than that of the control group (F=11.632, p=0.001).

이 연구는 '지구의 운동과 태양계' 학습 발달과정의 타당성을 2가지 측면에서 검증하고자 하였다: 첫 번째는 구인 타당도로서 학생들이 학습하는 동안에 본 연구의 학습 발달과정에서 설정한 가설적인 발달 경로에 따라 실제로 학생들의 발달이 나타나는가를 조사하였다. 두 번째는 결과 타당도로서 학습 발달과정에 기반한 적응적 교수활동이 대부분의 학생들에게 향상된 학습효과를 산출하는가를 조사하였다. 이를 위해 서울, 강원, 광주 지역 소재 6개 초등학교에서 5학년 학생 373명과 교사 17명이 연구에 참여하였다. 초등학교 5학년의 태양계와 별 단원에서 지구의 운동과 태양계 관련 내용을 포함하는 적응적 교수활동을 개발하고, 교수활동 사전과 사후에 순위 선다형 문항(13개)으로 구성된 검사지를 투입하여 그 결과를 비교 분석하였다. 구인 타당도를 알아보기 위해 실험군 학생들을 대상으로 사전과 사후의 수준 변화를 분석한 결과, 약 64%에 해당하는 학생들이 적응적 교수활동에 의해 가설적으로 설정한 경로를 따라 발달하는 것으로 나타났으며, 사전/사후 검사 결과를 Rasch 모델로 적용한 분석 결과도 이를 뒷받침하였다. 결과 타당도를 알아보기 위해 실험군과 대조군의 사전검사를 공변량으로 한 공변량분석(ANCOVA)을 실시한 결과, 실험군 학생들의 수준 향상이 대조군 학생들의 경우에 비해 비해 통계적으로 유의미하게 높은 것으로 나타났으며(F=30.819, p=0.000), 실험군이 대조군보다 정적(+) 수준 변화 경향이 더 뚜렷하게 나타났다. 또한, Rasch 모델을 적용하여 결과 타당도를 검증한 결과, 실험군이 대조군보다 학생 능력치 상승이 더 높게 나타났으며, 이러한 차이는 통계적으로 유의미한 것으로 분석되었다(F=11.632, p=0.001).

Keywords

References

  1. Alonzo, A. C., & Steedle, J. T. (2009). Developing and assessing a force and motion learning progression. Science Education, 93(3), 389-421. https://doi.org/10.1002/sce.20303
  2. Alonzo, A. C., Neidorf, T., & Anderson, C. W. (2012). Using learning progression to inform large-scale assessment. In Alonzo, A. C., & Gotwals, A. W. (Eds.). Learning science in science: Current challenges and future directions (pp. 211-240). Rotterdam, The Netherlands: Sense Purblishers.
  3. Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (2nd edtion). New York, NY: Routledge.
  4. Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11(1), 33-63. https://doi.org/10.1207/s15326977ea1101_2
  5. Corcoran, T., & Silander, M. (2009). Instruction in high schools: The evidence and the challenge. The Future of Children: America's High Schools, 19, 157-183.
  6. Corcoran, T., Mosher, F. A., & Rogat, A. (2009). Learning progressions in science: An evidence-based approach to reform. Consortium for Policy Research in Education Report #RR-63. Philadelphia, PA: Consortium for Policy Research in Education.
  7. Ji, E., & Chae, S. (2000). Theory and practices of Rasch model. Seoul: Kyoyook-Kwahak-Sa.
  8. Kim, Y., Lee, K., Maeng, S., & Lee, J. (2014). Development of assessment items for learning progressions on cross-cutting concepts and its application to physics and Earth science. Report submitted to Korea Foundation for the Advancement of Science & Creativity.
  9. Krajcik, J. S. (2012). The importance, cautions and future of learning progression research. In Alonzo, A. C., & Gotwals, A. W. (Eds.). Learning science in science: Current challenges and future directions (pp. 27-36). Rotterdam, The Netherlands: Sense Purblishers.
  10. Liu, X. (2010). Using and developing measurement instruments in science education: A Rasch modeling approach. Charlotte, NC: Information Age Publishing Inc.
  11. Maeng, S., & Lee, K. (2015). Cross-sectional item response analysis of geocognition assessment for the development of plate tectonics learning progressions: Rasch model. Journal of the Korean Earth Science Society, 35(1), 37-52.
  12. Maeng, S., Lee, K., Park, Y., Lee, J., & Oh, H. (2014). Development and validation of a learning progression for astronomical system using ordered multiple-choice assessment. Journal of the Korean Association for Science Education, 34(8), 703-718. https://doi.org/10.14697/jkase.2014.34.8.0703
  13. Maeng, S., Seong, Y., & Jang, S. (2013). Present states, methodological features, and an exemplar study of the research on learning progressions. Journal of the Korean Association for Science Education, 33, 161-180. https://doi.org/10.14697/jkase.2013.33.1.161
  14. Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149-174. https://doi.org/10.1007/BF02296272
  15. Ministry of Education, Science, and Technology. (2011). 2009 revised science curriculum. Seoul: MEST.
  16. National Research Council (NRC). (2006). Learning to think spatially. Washington, DC: National Academies Press.
  17. National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. (R.A. Duschl, H.A. Schweingruber, & A.W. Shouse, Eds.). Washington DC: The National Academies Press.
  18. National Research Council. (2012). A framework for k-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
  19. NGSS Lead States (2013). Next Generation Science Standards. Achieve, Inc.
  20. Oh, H., Lee, K., Park, Y-S., Maeng, S., & Lee, J-A. (2015). An analysis of systems thinking revealed in middle school astronomy classes: The case of science teachers' teaching practices for the unit of stars and universe. Journal of Korean Earth Science Society, 36(6), 591-608. https://doi.org/10.5467/JKESS.2015.36.6.591
  21. Plummer, J. D. (2014). Spatial thinking as the dimension of progress in an astronomy learning progression, Studies in Science Education, 50(1), 1-45. https://doi.org/10.1080/03057267.2013.869039
  22. Seong, Y., Maeng, S., & Jang, S. (2013). A learning progression for water cycle from fourth to sixth graders with ordered multiple-choice items. Elementary Science Education, 32(2), 139-158.
  23. Shin, N., Koh, E. J., Choi, C. I., & Jeong, D. H. (2014). Using a learning progression to characterize Korean secondary students' knowledge and submicroscopic representations of the particle nature of matter. Journal of Korean Association for Science Education, 34(5), 437-447. https://doi.org/10.14697/jkase.2014.34.5.0437
  24. Wilson, M. (2009). Measuring progressions: Assessment structures underlying a learning progression. Journal of Research in Science Teaching, 46, 716-730. https://doi.org/10.1002/tea.20318

Cited by

  1. A Proposal of Curriculum and Teaching Sequence for Seasonal Change by Exploring a Learning Progression vol.39, pp.3, 2018, https://doi.org/10.5467/JKESS.2018.39.3.260
  2. Exploring 6th Graders Learning Progression for Lunar Phase Change: Focusing on Astronomical Systems Thinking vol.39, pp.1, 2018, https://doi.org/10.5467/JKESS.2018.39.1.103
  3. 지구 공전에 대한 초등 교사들의 주제-특이적 PCK 발달과정 탐색을 위한 사례 연구 vol.36, pp.4, 2016, https://doi.org/10.15267/keses.2017.36.4.405
  4. 국가수준 학업성취도 평가의 서답형 문항을 이용한 중학교 과학 8개 핵심 개념에 대한 학습발달과정 탐색 vol.41, pp.3, 2016, https://doi.org/10.21796/jse.2017.41.3.382
  5. 지구의 공전과 별자리의 겉보기 운동에 대한 초등학생들의 공간적 추론 발달 경로의 사례 연구 vol.38, pp.4, 2016, https://doi.org/10.14697/jkase.2018.38.4.481
  6. 문항 반응 분석을 활용한 초등학생과 중학생의 시스템 사고 검사 도구 타당도 검증 vol.67, pp.2, 2016, https://doi.org/10.25152/ser.2019.67.2.249
  7. 다층 서답형 문항을 이용한 태양계 구조 학습 발달과정 개발 및 타당성 검증 vol.41, pp.3, 2020, https://doi.org/10.5467/jkess.2020.41.3.291
  8. 이슬점에 대한 중학생들의 개념 이해 평가 루브릭 개발 vol.41, pp.6, 2016, https://doi.org/10.5467/jkess.2020.41.6.684