DOI QR코드

DOI QR Code

Anti-inflammatory properties of chloroform extracts from GW10-45, a new cultivar derived from Pleurotus ferulae, in RAW264.7 murine macrophages.

아위느타리 신품종 GW10-45 클로로포름 추출물의 항염증 효과

  • Choi, Hyung-Wook (Department of Microbiology, Pukyong National University) ;
  • Kim, Eun-Joo (Department of Microbiology, Pukyong National University) ;
  • Kim, Keun-Ki (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Shin, Pyung-Gyun (Mushroom Research Division, National Institute of Horticulture & Herbal Science, Rural Development Administration) ;
  • Kim, Gun-Do (Department of Microbiology, Pukyong National University)
  • 최형욱 (부경대학교 미생물학과) ;
  • 김은주 (부경대학교 미생물학과) ;
  • 김근기 (부산대학교 생명환경화학과) ;
  • 신평균 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 김군도 (부경대학교 미생물학과)
  • Received : 2016.11.19
  • Accepted : 2016.12.21
  • Published : 2016.12.31

Abstract

Chronic inflammation, which results from continuous exposure to antigens, is one of major reasons for tissue damage and diseases such as rheumatoid arthritis and type 2 diabetes. In this study, we investigated the anti-inflammatory effects of extracts (hexane, $CHCl_3$, MeOH, $MeOH/H_2O$, and $H_2O$) from GW10-45, which is our new cultivar of an edible mushroom Pleurotus ferulae (ASI 2803 and ASI 2778), in RAW264.7 murine macrophages. None of the extracts showed cytotoxicity in RAW264.7 cells and the hexane, CHCl and H extracts reduced nitric oxide (NO) production, an important inflammatory marker, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Particularly, the extract (CG45) inhibited NO production more than the other extracts did. To elucidate the effects of CG45 on molecular targets involved in pro-inflammatory responses, we performed western blot analysis. Expression of inducible nitric oxide (iNOS) significantly decreased in LPS and CG45 co-incubated cells compared to that in LPS only-treated cells. Additionally, another protein thatplays a critical role in inflammation, was down-regulated in cells treated with both LPS and CG45. In the nuclear factor $(NF)-{\kappa}B$ pathway, phosphorylation of $I{\kappa}B{\alpha}$ decreased in RAW264.7 cells treated with both LPS and CG45. Furthermore, CG45 inhibited the phosphorylation of $NF-{\kappa}B$ in LPS-stimulated RAW264.7 cells. Conclusively, CG45 could suppress pro-inflammatory responses in LPS-stimulated RAW264.7 cells by down-regulating not only the phosphorylation of $NF-{\kappa}B$ and $I{\kappa}B{\alpha}$ but also the expression of iNOS and COX-2 without any cytotoxicity.

만성적 염증 반응은 지속적인 항원에 대한 노출에 의해 발생할 수 있으며 관절염이나 2형 당뇨와 같은 여러 염증성 질환의 가장 큰 발병 원인이 된다. 본 연구에서는 아위 느타리 버섯 (Pleurotus ferulae)의 새로운 육종 균주인 GW10-45의 추출물(헥산, 클로로포름, 메탄올, 메탄올/물, 물)이 가지는 RAW264.7 대식세포에 대한 항염증 활성을 연구하였다. 먼저, 각각의 추출물은 RAW264.7 세포주에 대하여 세포독성을 가지지 않았으며, 헥산 및 클로로포름, 물 추출물이 산화질소의 생성을 억제하였다. 그 중, 클로로포름 추출물(CG45)을 처리한 실험군에서 가장 높은 산화질소 생성 억제효과가 나타남을 확인하였다. 또한 주요한 염증성 인자들의 단백질 발현 및 인산화에 미치는 영향을 확인하기 위하여 Western blot 분석을 시행하였다. 그 결과, LPS로 유도된 염증 모델에 CG45를 처리하였을 때 iNOS 및 COX-2 단백질의 발현이 급격히 감소함을 확인하였다. 또한 $NF-{\kappa}B$ 신호전달에서 $NF-{\kappa}B$와 이의 억제 단백질인 $I{\kappa}B{\alpha}$의 인산화가 LPS만을 처리한 군과 비교하여 CG45를 함께 처리한 실험군에서 크게 감소함을 확인하였다. 실험을 통하여 아위느타리 버섯의 새로운 육종균주 GW10-45의 추출물 CG45는 $NF-{\kappa}B$ 신호전달 과정에서 인산화 정도를 억제함으로써 iNOS 및 COX-2 단백질의 발현을 억제하여 LPS로 유도된 RAW264.7 세포주의 염증 모델에서 그 염증 반응을 억제할 수 있다는 것을 확인하였다.

Keywords

References

  1. Dilshara MG, Lee KT, Kim HJ, Lee HJ, Choi YH, Lee CM, Kim LK, Kim GY. 2014. Anti-inflammatory mechanism of alpha-viniferin regulates lipopolysaccharide-induced release of proinflammatory mediators in BV2 microglial cells. Cell Immunol. 290:21-29. https://doi.org/10.1016/j.cellimm.2014.04.009
  2. Jeong DH, Kim KB, Kim MJ, Kang BK, Ahn DH. 2014. Anti-inflammatory activity of methanol extract and n-hexane fraction mojabanchromanol b from Myagropsis myagroides. Life Sci. 114:12-19. https://doi.org/10.1016/j.lfs.2014.07.036
  3. Schuliga M. 2015. NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules. 5:1266-1283. https://doi.org/10.3390/biom5031266
  4. Libby P. 2007. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev. 65:S140-S146. https://doi.org/10.1301/nr.2007.dec.S140-S146
  5. Kundu JK, Surh YJ. 2008. Inflammation: gearing the journey to cancer. Mutat Res. 659:15-30. https://doi.org/10.1016/j.mrrev.2008.03.002
  6. Liu G, Yang H. 2013. Modulation of macrophage activation and programming in immunity. J Cell Physiol. 228:502-512. https://doi.org/10.1002/jcp.24157
  7. Decano JL, Mattson PCAikawa M. 2016. Macrophages in Vascular Inflammation: Origins and Functions. Curr Atheroscler Rep. 18:1-7. https://doi.org/10.1007/s11883-015-0556-z
  8. Guha M, Mackman N. 2001a. LPS induction of gene expression in human monocytes. Cell Signal. 13:85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  9. Park HH, Kim MJ, Li Y, Park YN, Lee J, Lee YJ, Kim SG, Park HJ, Son JK, Chang HW, Lee E. 2013. Britanin suppresses LPS-induced nitric oxide, PGE2 and cytokine production via NF-kappaB and MAPK inactivation in RAW 264.7 cells. Int Immunopharmacol. 15:296-302. https://doi.org/10.1016/j.intimp.2012.12.005
  10. Li Q, Verma IM. 2002. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2:725-734. https://doi.org/10.1038/nri910
  11. Patel Y, Naraian R, Singh V. 2012. Medicinal properties of Pleurotus species (Oyster mushroom): A review. World J Fungal Plant Biol. 3:1-12.
  12. Choi D, Cha W, Kang S, Lee B. 2004. Effect of Pleurotus ferulae extracts on viability of human lung cancer and cervical cancer cell lines. Biotechnol Bioprocess Engineering. 9:356-361. https://doi.org/10.1007/BF02933057
  13. Hu S, Lien J, Hsieh S, Wang J, Chang S. 2009. Antioxidant and antigenotoxicity activities of extracts from liquid submerged culture of culinary-medicinal ferula oyster mushroom, Pleurotus eryngii (DC.) Quel. var. ferulae (Lanzi) Sacc. (Agaricomycetideae). Inter J Med Mushrooms. 11:395-408. https://doi.org/10.1615/IntJMedMushr.v11.i4.60
  14. Paradise WA, Vesper BJ, Goel A, Waltonen JD, Altman KW, Haines GK, Radosevich JA. 2010. Nitric oxide: perspectives and emerging studies of a well known cytotoxin. Int J Mol Sci. 11:2715-2745. https://doi.org/10.3390/ijms11072715
  15. Zhang D, Zhang H, Lao YZ, Wu R, Xu JW, Murad F, Bian K, Xu HX. 2015. Anti-inflammatory effect of 1, 3, 5, 7-tetrahydroxy-8-isoprenylxanthone isolated from twigs of Garcinia esculenta on stimulated macrophage. Mediators Inflamm. 2015:350564. doi: 10.1155/2015/350564.
  16. Kim EJ, Kim JH. 2015. Fibrinolytic, thrombin inhibitory, anti-oxidative and anti-inflammatory activities of Pleurotus ferulae. J Mushrooms. 13:30-36. https://doi.org/10.14480/JM.2015.13.1.30
  17. Guha M, Mackman N. 2001b. LPS induction of gene expression in human monocytes. Cell Signal. 13:85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  18. Ivashkiv LB. 2011. Inflammatory signaling in macrophages: transitions from acute to tolerant and alternative activation states. Eur J Immunol. 41:2477-2481. https://doi.org/10.1002/eji.201141783
  19. Ha U, Lim JH, Jono H, Koga T, Srivastava A, Malley R, Pages G, Pouyssegur J, Li JD. 2007. A novel role for IkappaB kinase (IKK) alpha and IKKbeta in ERK-dependent up-regulation of MUC5AC mucin transcription by Streptococcus pneumoniae. J Immunol. 178:1736-1747. https://doi.org/10.4049/jimmunol.178.3.1736
  20. Kim SJ, Um JY, Lee JY. 2011. Anti-inflammatory activity of hyperoside through the suppression of nuclear factor-kappaB activation in mouse peritoneal macrophages. Am J Chin Med. 39:171-181. https://doi.org/10.1142/S0192415X11008737
  21. Barnes PJ, Karin M. 1997. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 336:1066-1071. https://doi.org/10.1056/NEJM199704103361506
  22. Shin PG, Yoo YB, Kong WS, Oh YL, Noh HJ. 2015. New varieties of Pleurotus ferulae. Patent No. 10-2015-0089732.